We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

What Can Crocodile DNA Teach Us About the Ice Age?

An American Crocodile in water.
American Crocodile (Crocodylus acutus) on the Pacific coast of Panama. Credit: José Avila-Cervantes
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

What drives crocodile evolution? Is climate a major factor or changes in sea levels? Determined to find answers to these questions, researchers from McGill University discovered that while changing temperatures and rainfall had little impact on the crocodiles’ gene flow over the past three million years, changes to sea levels during the Ice Age had a different effect.


“The American crocodile tolerates huge variations in temperature and rainfall. But about 20,000 years ago – when much of the world's water was frozen, forming the vast ice sheets of the last glacial maximum – sea levels dropped by more than 100 metres. This created a geographical barrier that separated the gene flow of crocodiles in Panama,” says postdoctoral fellow José Avila-Cervantes, working under the supervision of McGill professor Hans Larsson.


The researchers point out that the crocodiles are good swimmers, but they can’t travel long distances on land. As a result, the Caribbean and Pacific crocodile populations were isolated from each other, and consequently have undergone different genetic mutations.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

The team compared the climate tolerance of living populations of American crocodiles (Crocodylus acutus) to the paleoclimate estimates for the region over the past 3 million years – the time span of extreme climate variation during the Ice Age.


“This is one of the first times Ice Age effects have been found in a tropical species. It’s exciting to discover effects of the last Ice Age glaciation still resonate in the genomes of Pacific and Caribbean American crocodiles today,” says Larsson, Professor of Biology at the Redpath Museum of McGill University.


“Discovering that these animals would have easily tolerated the climate swings of the Ice Age speaks to their resilience over geological time. Only humans in recent decades of hunting and land development seem to really affect crocodiles,” he says. The findings offer new insight into how environmental drivers affect genetic evolution and where conservation efforts of particular crocodile populations in Panama should be focused.


Reference: Avila-Cervantes J, Larsson HCE. Ice Age effects on genetic divergence of the American crocodile (Crocodylus acutus) in Panama: reconstructing limits of gene flow and environmental ranges: a reply to O’Dea et al. Evolution. 2023;77(1):329-334. doi: 10.1093/evolut/qpac006


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.