We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.


A Human’s BMI Impacts How Their Body Changes Soil Microbiome After Death and Decomposition

A Human’s BMI Impacts How Their Body Changes Soil Microbiome After Death and Decomposition content piece image
Credit: Jing/ Pixabay
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Research on decomposition often focuses on environmental factors like temperature or humidity, but researchers at the University of Tennessee in Knoxville have taken a closer look at contributions from inside the body. One factor that may play an important role is the body mass index (BMI) of a decomposing body, they report this week in  mSpherea journal of the American Society for Microbiology.

The researchers investigated how intrinsic factors like disease, BMI or medication load affected microbial life at the university’s body donation research facility, specifically established for the decomposition of human remains. They analyzed the bacterial and fungal composition of fluids produced by 19 human bodies, as well as the composition of the surrounding soil, during “active decomposition,” which lasts until the carcass stops releasing fluids and the abdomen cavity collapses.

For the new study, they found that in the soil beneath and near individuals who were underweight (BMI less than 18.5) and normal weight (a BMI between 18.5 and 26), the diversity decreased in bacterial  communities. In obese and overweight individuals (with BMIs above 26), the diversity remained mostly constant. 

“We think about BMI as a proxy for how much fat versus how much muscle we have in our body,” said microbial ecologist Jennifer DeBruyn, Ph.D, at the University of Tennessee’s Anthropology Research Facility, which is also known as the “Body Farm.” Those 2 biological tissues have different chemical compositions that may affect the soil differently.

“We know from plant litter studies that even slight changes in tissue chemistry can change the microbial decomposers,” she said. More fat tissue—in a body with higher BMI—means more moisture and a higher ratio of carbon to nitrogen, relative to a body with a lower BMI. 

The study began, DeBruyn said, with observations by researchers who’d worked for years with decomposing bodies at the Body Farm. They noticed that bodies donated and placed on the soil  at the same time didn’t change in the same way over time. “The bodies experienced identical environmental conditions, but we saw big differences in how quickly they decomposed,” DeBruyn said. That suggested that something within the body, rather than in the environment, contributed to the process. 

For the  mSphere  study, the researchers studied 19 bodies that had been donated and placed in the outdoor facility between February 2019 and March 2020. The ages of the donors ranged from 40-91, with a mean of 71, and the BMIs ranged from 14.2-55.1. Temperature and humidity data were recorded hourly by remote tags, and the researchers collected soil samples at regular intervals throughout decomposition. They also used syringes to collect samples of fluids that had been released by the bodies and pooled in the soil. 

The researchers searched the data for connections. Most of the bacterial communities in the pooled fluid belonged to the  Firmicutes  and  Proteobacteria  phyla, which include dominant species typically found in the human gut. The majority of the fungal communities in those fluids were associated with the class  Saccharomycetes.  But those measurements didn’t explain the variation in decomposition rates.

In the soil around the bodies, they found more diversity in the soil microbe communities than they’d observed in the decomposition fluids.

“My Ph.D. student Allison Mason spent so much time digging into the data for any explanation of why we saw the differences we did,” DeBruyn said. “And then she stumbled on BMI as a predictor.”

Understanding the mechanism behind the observation will require more work, DeBruyn said. As will other observations made during the study. The soil around people who’d been treated for cancer showed less  microbial species  richness, for example, perhaps because the chemotherapeutic agents inhibited the growth of microbes.

However, DeBruyn cautioned that this study identified connections between intrinsic factors  and soil microbial populations—but didn’t show causality. It’s a first step toward answering the bigger question of how  differences in  human bodies  affects the soil post-mortem, she said.

“The biggest problem with these humans is that we’re just a big mixed bag of chemicals, and that’s why this kind of study really hasn’t been done before,” she said. “Our paper  is really one of the first to  use a large enough sample size of donors  to reveal these patterns.” 

Reference: Mason AR, McKee-Zech HS, Hoeland KM, et al. Body mass index (BMI) impacts soil chemical and microbial response to human decomposition. mSphere. 2022;0(0):e00325-22. doi: 10.1128/msphere.00325-22

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.