We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Dendritic Cells Found To Migrate in Single File Along Blood Vessel Outer Walls

A colorized image of young dendritic cells (green) moving away from blood vessels (blue) as they age (shown in red).
The figure shows the complex organization of dendritic cells in the lymph node. Blood vessels are shown in blue. The cells in green are young dendritic cells whereas the dendritic cells in red are a few days older and have already migrated. The dendritic cells in orange are intermediate in age. Credit: Dr. Milas Ugur / University of Würzburg
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

The cells of the immune system circulate mainly in the blood and migrate into the body's tissues after an inflammation. Some types of immune cells, however, are permanently located in the tissues, where they come together to form three-dimensional networks.

How do these networks form and how are they maintained? For the long-lived macrophages (phagocytes), the answer is already known: They settle in so-called niches. These are environments of connective tissue cells that supply the macrophages with nutrients and keep them alive.

A team led by Professors Georg Gasteiger, Dominic Grün and Wolfgang Kastenmüller from the Institute of Systems Immunology at Julius-Maximilians-Universität Würzburg (JMU) / Max Planck Research Group has now turned its attention to a related type of immune cells, the so-called dendritic cells.

These immune cells are essential for the control of immune responses because they are at the first line of defense of the immune system: They recognize foreign structures, take them in and process them into a kind of mugshot. They then present the photo to other immune cells and trigger a specific immune response, for example against pathogens or cancer cells.

Dendritic cells migrate through the tissue

The special thing about dendritic cells: They only live for about a week and during this time they continuously migrate through the body's tissues. “In this respect, it was clear that the classic niche concept would not work here" , says Wolfgang Kastenmüller.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE
The JMU team found a completely new concept for this, according to which three-dimensional cell networks can organize themselves: Dendritic cells orient themselves to the blood vessels and migrate one after the other along their outer wall – similar to children walking in single file. The blood vessels thus determine the three-dimensional arrangement of the cells.

Cytokines keep the cells together

"We wanted to understand how this process is regulated and how the cells manage to close gaps in their network," explains Dr. Milas Ugur, a scientist in Professor Kastenmüller's group. Closing such gaps is important because otherwise the immune defense no longer functions optimally.

As the JMU team reports in the journal Immunity, it is due to a locally acting cytokine, the FLT3 ligand, that the dendritic cells always stay close together during their developmental migration.

The cytokines are continuously and evenly produced locally and consumed by the dendritic cells. If there are gaps in the group, more cytokines are available for the isolated dendritic cells. This surplus speeds them up in their development and movement and helps them to reconnect with the group. When the cells have moved up, they have a little less cytokines available again due to competition from their neighbours. Accordingly, they slow down their developmental speed.

Of prognostic value for tumour diseases

These findings are for example important  for cancer therapy: dendritic cells have a high prognostic value for tumour diseases: The higher their abundance in the tumour, the better the prognosis for the patient. This is especially true after immunotherapy.

"Increasing our basic insights on dendritic cell biology will help us to restore the networks of these cells in tumours and thereby tailor optimal therapies in the future" explains Kastenmüller.

How the researchers are moving forward

The JMU researchers’ data so far is based on the analysis of lymph nodes from animal models. The team next wants to test whether the same principles of network organisation of dendritic cells apply to all tissues and also in humans.

Reference: Ugur M, Labios RJ, Fenton C, et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity. 2023. doi: 10.1016/j.immuni.2023.06.020

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.