We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Devastating Pathogen Has Proteins Mapped for the First Time

Three microscope lenses.
Credit: Pawel Czerwinski/ Unsplash
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

A parasite which has devasting impacts on agriculture and human health is the first pathogen to have its proteins located and mapped within its cells – providing clues to their function and helping to identify potential drug targets.


African trypanosomes are parasites transmitted by tsetse flies that cause sleeping sickness in humans (presenting as fever, anaemia and, in serious cases, death) and a similar disease celled nagana in cattle. These parasites have made large areas of Africa unsuitable for livestock production, costing rural farmers up to ~3.7 billion pounds each year in lost revenue.


For the first time ever, scientists have developed a detailed “protein atlas” of a pathogen – a kind of biological map that locates proteins in cells. They conducted the research on Trypanosoma brucei (T. brucei), helping to understand where proteins are within its cells, providing functional insights that may ultimately help treat parasite infections.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE
The benefits of this ground-breaking research by the Universities of Warwick, Oxford and Oxford Brookes do not stop there. In mapping the proteins within T. brucei, scientists now understand more about its evolutionary cell biology. Like humans, T. brucei are eukaryotes – meaning their cells have a nucleus. However, T. brucei evolved in a very divergent way to human cells. Exploring protein mapping sheds light on how it evolved to be so different.


Samuel Dean, Assistant Professor of parasitology at the University of Warwick, said: “In this study, we genetically modified trypanosome parasites to make proteins attached to a green fluorescent dye. This helped to show exactly where its proteins are within the cell. Using this information, we are able to understand more about what these proteins might be doing. Up until now 50% of the proteins in T. brucei had unknown functions.


“This has significant impacts on our understanding of pathogen evolution and provides functional clues for thousands of otherwise uncharacterised proteins. This will help further investigations and may help to inform on new treatments for these terrible diseases.”


Professor Keith Matthews, expert in parasite biology at the University of Edinburgh, added: "This important resource will be of immense long-term value to researchers focused on these devastating pathogens, but also helps to understand the protein function and evolution of all nucleated cells, including our own.”


University of Ghana senior lecturer, Theresa Manful Gwira, who is Head of Research Training at the West African Centre for Cell Biology of Infectious Pathogens, added: “This is a very important work, and a powerful resource that will be useful to many researchers including African scientists that work on the devastating African trypanosomiasis, thus contributing to a better understanding of the parasite biology.”


Reference: Billington K, Halliday C, Madden R, et al. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol. 2023;8(3):533-547. doi: 10.1038/s41564-022-01295-6

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.