We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Diverse Antibodies Thanks to New Loops

Diverse Antibodies Thanks to New Loops content piece image
Credit: Pixabay.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Diversity is good, especially when it comes to antibodies. It’s long been known that a gene assembly process called V(D)J recombination allows our immune system to mix and match bits of genetic code, generating new antibodies to conquer newly encountered threats. But how these gene segments come together to be spliced has been a mystery.  A new study in today’s Nature provides the answer.

Our DNA strands are organized, together with certain proteins, into a packaging called chromatin, which contains multiple loops. When a cell needs to build a particular protein, the chromatin loops bring two relatively distant DNA segments in close proximity so they can work together. Many of these loops are fixed in place, but cells can sometimes rearrange loops or make new loops when they need to — notably, cancer cells and immune cells.

The new research, led by Frederick Alt, PhD, director of the Program in Cellular and Molecular Medicine (PCMM) at Boston Children’s Hospital, shows in exquisite detail how our immune system’s B cells exploit the loop formation process for the purpose of making new kinds of antibodies.

Scanning loops as they form

As the researchers show, a pair of enzymes called RAG1 and RAG2 couple with mechanisms involved in making the chromatin loops to initiate the first step of V(D)J recombination: joining the D and J segments. First, the RAG 1/2 complex binds to a site on an antibody gene known as the “recombination center.” Next, as the DNA scrolls past during the process of loop formation (“extrusion”), the RAG complex scans for the D and J segments the cell wants to combine. Then, other factors impede the extrusion process, pausing the scrolling DNA at the recombination center so that RAG can access the desired segments.

“Antibody gene loci harness the loop extrusion process to properly present substrate gene segments to the RAG complex for V(D)J recombination,” says Alt.

Many of the hard-wired chromatin loops are formed and anchored by a factor called CTCF. But the Alt lab shows that other factors are involved in dynamic situations, like antibody formation, that require new loops on the fly. The study also establishes the role of a protein called cohesin in driving the loop extrusion/RAG scanning process.

“While these findings have been made in the context of V(D)J recombination in antibody formation, they have implications for processes that could be involved in gene regulation more generally,” says Alt.

The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Yu Zhang, Xuefei Zhang, Zhaoqing Ba, Zhuoyi Liang, Edward W. Dring, Hongli Hu, Jiangman Lou, Nia Kyritsis, Jeffrey Zurita, Muhammad S. Shamim, Aviva Presser Aiden, Erez Lieberman Aiden & Frederick W. Alt. Nature (2019), https://doi.org/10.1038/s41586-019-1547-y.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.