Enzyme-Powered “Snot Bots” Help Deliver Drugs in Sticky Situations
Tiny, enzyme-powered "snot bots" can push through mucus, helping to deliver drugs more efficiently.
Complete the form below to unlock access to ALL audio articles.
Snot might not be the first place you’d expect nanobots to be swimming around. But this slimy secretion exists in more places than just your nose and piles of dirty tissues — it also lines and helps protect the lungs, stomach, intestines and eyes. And now, researchers reporting in ACS Nano have demonstrated in mice that their tiny, enzyme-powered “snot bots” can push through the defensive, sticky layer and potentially deliver drugs more efficiently.
Snot, known more scientifically as mucus, protects cells from pathogens and irritants by trapping them in a sticky barrier. But that protectiveness also keeps out locally administered drug treatments. A drug molecule can be attached to a small nanoparticle that may help it slip through the barrier more easily or be co-administered with other compounds that help liquefy the mucus. But Samuel Sánchez and colleagues wanted to combine these strategies, and they made a nano-sized snot bot fueled by mucus-busting hydrogen peroxide (H2O2).
To build the nano-sized robots (10 of them lined up would span a red blood cell), researchers attached catalase enzymes to porous silica nanoparticles. The pores in these particles can be filled with drug molecules, helping them sneak through the mucus defenses like a Trojan horse. Initial tests showed that, when administered alongside H2O2, the catalase enzymes propelled the bots by breaking down the peroxide fuel into oxygen and water.
Want more breaking news?
Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.
Subscribe for FREEReference: Serra-Casablancas M, Di Carlo V, Esporrín-Ubieto D, Prado-Morales C, Bakenecker AC, Sánchez S. Catalase-powered nanobots for overcoming the mucus barrier. ACS Nano. 2024;18(26):16701-16714. doi: 10.1021/acsnano.4c01760
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.