We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Giant Viruses in Climate-Endangered Arctic Freshwater Lake Investigated
News

Giant Viruses in Climate-Endangered Arctic Freshwater Lake Investigated

Giant Viruses in Climate-Endangered Arctic Freshwater Lake Investigated
News

Giant Viruses in Climate-Endangered Arctic Freshwater Lake Investigated

Credit: Pixabay.
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Giant Viruses in Climate-Endangered Arctic Freshwater Lake Investigated"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Less than 500 miles from the North Pole, the Milne Fiord Epishelf Lake is a unique freshwater lake that floats atop the Arctic Ocean, held in place only by a coating of ice. The lake is dominated by single-celled organisms, notably cyanobacteria, that are frequently infected by unusual “giant viruses.” Investigators from Université Laval, Québec, Canada have produced the first assessment of the abundance of the viruses in this lake. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.


Viruses are key to understanding polar aquatic ecosystems, as these ecosystems are dominated by single celled microorganisms, which are frequently infected by viruses. These viruses, and their diversity and distribution in the Milne Fiord Lake, have seldom been studied. The team is now working to sequence the giant viruses, an effort that will likely lead to understanding how the viruses influence the lake’s ecology via their interactions with the cyanobacteria they infect. 


Quickly rising temperatures limit the time remaining for microbiologists to develop a clear picture of the biodiversity and biogeochemical cycles of these ice-dependent environments, as well as the consequences of the rapid, irreversible changes in temperature. “The ice shelf that holds the lake in place is deteriorating every year, and when it breaks up, the lake will drain into the Arctic Ocean and be lost,” said corresponding author Alexander I. Culley.   


“Our results highlight the uniqueness of the viral community in the freshwater lake, as compared to the marine fiord water, particularly in the halocline community,” said Culley. The halocline is an area where salinity falls quickly as one ascends the water column. According to Culley, this environment offers niches for viruses and hosts which are found neither in freshwater nor marine layers of uniform salinity.   


The remote lake in the high arctic could only be reached by helicopter, when weather conditions allowed. The research team collected water samples and sequenced all the DNA in the lake water, allowing them to identify the viruses and microorganisms within it. The study establishes a basis for advancing understanding of viral ecology in diverse global environments, particularly in the high Arctic. 


“High bacterial abundance coupled with a possible prevalence of lytic lifestyle at this depth suggests that viruses have an important role in biomass turnover,” said Mary Thaler, Ph.D., a member of Culley’s team at Université Laval. “Lytic lifestyle” refers to the release of daughter virus particles as the host microbial cell is destroyed.   


The most dramatic change observed in the Milne Fiord Epishelf Lake was a multiyear decline in the abundance of cyanobacteria. The researchers attributed that drop to the increasing marine influence in the freshwater lake, “since cyanobacteria have very low abundance in the Arctic Ocean,” they wrote.   


Nonetheless, the details of this ecosystem remain obscure, because so far most of its viruses are known only from fragments of their sequences. Thus, in most cases, the scientists do not yet know how the viruses influence the microbes they infect, or which viruses inhabit which microbes.    


Reference: Labbé M, Thaler M, Pitot TM, Rapp JZ, Vincent WF, Culley AI. Climate-Endangered Arctic Epishelf Lake Harbors Viral Assemblages with Distinct Genetic Repertoires. Appl Env Micro. 2022;0(0):e00228-22. doi:10.1128/aem.00228-22


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.


Advertisement