We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
How Do "Water Bears" Survive the Extremes?
News

How Do "Water Bears" Survive the Extremes?

How Do "Water Bears" Survive the Extremes?
News

How Do "Water Bears" Survive the Extremes?

Credit: Martin Mach
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "How Do "Water Bears" Survive the Extremes?"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Diminutive animals known as tardigrades appear to us as plump, squeezable toys, earning them irresistible nicknames such as “water bears” and “moss piglets.”

But don’t let their squishy appearance fool you. These microscopic invertebrates are highly resilient. In fact, they’re considered “extremophiles,” with near super-power abilities of defense in harsh conditions. What’s behind these capabilities? Scientists at the University of California San Diego have gained a new understanding of how tardigrades are protected in extreme conditions.

At roughly 0.1 to one millimeter in size, tardigrades are found in water environments around the world—including mountainous, deep sea and Antarctic environments. They are well documented as having remarkable abilities to survive extreme conditions, from dangerously high radiation levels to chillingly low temperatures to exposure to deadly chemicals. They’ve even been launched into space as part of a project to transfer life forms to the moon (and crash-landed there with the Beresheet lander spacecraft earlier this year).

Researchers from UC San Diego’s Division of Biological Sciences employed a variety of biochemical techniques to investigate the mechanisms underlying the survivability of tardigrades in the extremes.

Previous studies identified a protein named Dsup (for Damage suppression protein), which is found only in tardigrades. Intriguingly, when Dsup is tested in human cells, it can protect them from X-rays; however, it was not known how Dsup performs this impressive feat. Through biochemical analysis, the UC San Diego team discovered that Dsup binds to chromatin, which is the form of DNA inside cells. Once bound to chromatin, Dsup protects cells by forming a protective cloud that shields DNA from hydroxyl radicals, which are produced by X-rays.

“We now have a molecular explanation for how Dsup protects cells from X-ray irradiation,” said Kadonaga, the Amylin Endowed Chair in Lifesciences Education and Research. “We see that it has two parts, one piece that binds to chromatin and the rest of it forming a kind of cloud that protects the DNA from hydroxyl radicals.”

However, Kadonaga doesn’t think this protection was meant specifically to shield against radiation. Instead, it’s probably a survival mechanism against hydroxyl radicals in the mossy environments that many terrestrial tardigrades inhabit. When the moss dries up, tardigrades shift into a dormant state of dehydration, or “anhydrobiosis,” during which Dsup protection should help them survive.

The researchers say the new findings eventually could help researchers develop animal cells that can live longer under extreme environmental conditions. In biotechnology, this knowledge could be used to increase the durability and longevity of cells, such as for the production of some pharmaceuticals in cultured cells.

“In theory, it seems possible that optimized versions of Dsup could be designed for the protection of DNA in many different types of cells,” said Kadonaga. “Dsup might thus be used in a range of applications, such as cell-based therapies and diagnostic kits in which increased cell survival is beneficial.”

Reference

Chavez et al. (2019) The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. eLife. DOI: https://doi.org/10.7554/eLife.47682.001

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement