We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Nature’s Own Nanoparticles Harnessed to Target Disease

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The results suggest the technique could be used to combat a variety of diseases.
“We use an antibody coating we chose to deliver therapeutic genetic material we selected   to target cells,” said Dr. Philip Askenase, professor of medicine and senior author of the study published July8 in the Journal of Allergy and Clinical Immunology.

The delivery system consists of naturally occurring nanoparticles called exosomes that are about one thousandth the size of donor cells that release them. These tiny vesicles were once thought to contain only unneeded cellular debris. However, in the last decade, scientists have shown that there are billions of exosomes in the circulation and that they carry genetic instructions in the form of micro-RNAs (miRNA) to regulate the functions of nearby and distant cells.

Askenase and colleagues found that exosomes could be coated with an antibody of their choosing. These nanovesicles were able to deliver therapeutic miRNA to specific cells targeted by the antibody. In the current study, the coated exosomes delivered their miRNA cargo to immune system cells, inhibiting an active allergic disease response in the skin of mice.

“These natural nanoparticles are present throughout the body,” said Dr. Krzysztof Bryniarski of Jagiellonian University and lead author of the paper. “They seem to be a superior delivery system compared to artificial nanoparticles currently in use, which often are eliminated from the body because they are sensed as artificial.”

In theory, the researchers said, the natural nanoparticles coated with chosen specific antibodies and loaded with selected miRNAs could be used to specifically target and then genetically alter crucial cells involved in allergic conditions such as asthma, autoimmune responses, and potentially even cancers and neurological diseases.