We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Obesity Prevents Treatment of Pancreatic Cancer

Obesity Prevents Treatment of Pancreatic Cancer

Obesity Prevents Treatment of Pancreatic Cancer

Obesity Prevents Treatment of Pancreatic Cancer

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Obesity Prevents Treatment of Pancreatic Cancer"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Massachusetts General Hospital (MGH) investigators have discovered the mechanism by which obesity increases inflammation and desmoplasia – an accumulation of connective tissue – in the most common form of pancreatic cancer. In their report published online in Cancer Discovery the researchers describe how interactions among fat cells, immune cells and connective tissue cells in obese individuals stimulate a microenvironment that promotes tumour progression while blocking the response to chemotherapy. They also identify a treatment strategy that may inhibit the process. 

“We evaluated the effects of obesity on numerous aspects of tumour growth, progression and treatment response in several animal models of pancreatic ductal adenocarcinoma and confirmed our findings in samples from cancer patients,” says Dai Fukumura, MD, PhD, of the Steele Laboratory of Tumour Biology in the MGH Department of Radiation Oncology, the study's co-senior author. “Along with finding that tumours from obese mice or patients exhibited elevated levels of adipocytes or fat cells and of desmoplasia, both of which fuel tumour progression and interfere with treatment response, we also identified the underlying cause.” 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide, and more than half of patients diagnosed with PDAC are overweight or obese. Among patients with PDAC, obesity more than doubles the already high risk of death. Previous research by the MGH team and others has shown that PDAC is characterized by elevated desmoplasia – with an overproduction of extracellular matrix tissue by pancreatic stellate cells – which both promotes the survival and migration of cancer cells and blocks the penetration of chemotherapy drugs into tumours. Obesity itself is known to contribute to desmoplasia, with the expansion of fat tissue leading to inflammation and fibrosis and an accumulation of fat within the normal pancreas, which also causes inflammation.

The team’s experiments revealed that the elevated desmoplasia in obese mouse models of PDAC was caused by activation of pancreatic stellate cells through the antiogensin II type-1 receptor (AT1) signalling pathway. This activation was promoted by production of interleukin-1 beta (IL-1ß) both by fat cells and by the immune cells called neutrophils within and around tumours. Inhibiting AT1 signaling with losartan, which is used clinically to treat hypertension, reduced obesity-associated desmoplasia and tumour growth and increased the response to chemotherapy in the obese mouse model but not in normal weight animals. Analysis of tumours from human PDAC patients revealed increased desmoplasia and fat deposits only in samples from obese patients, and data from more than 300 patients showed that excess weight was associated with a reduction in patients’ response to chemotherapy. 

João Incio, MD, PhD, of the Steele lab, lead author of the study, says, “Understanding the way that obesity affects pancreatic cancer may help us identify biomarkers – such as body weight and increased levels of tumour fibrosis – that could identify patients for whom AT1 blockers or IL-1ß antibodies would be most beneficial. Since FDA-approved versions of both agents are readily available, this strategy could be readily translated into the clinic. In addition, incorporating body weight into the design of preclinical studies could better account for the lack of response to conventional chemotherapeutical drugs.”

Co-senior author Rakesh K. Jain, PhD, director of the Steele Laboratory, adds, “With the majority of pancreatic cancer patients being overweight or obese at diagnosis, uncovering potential therapeutic targets within the mechanisms associating obesity with poor cancer prognoses is the first step towards developing remedies that could disrupt this association and significantly improve patient outcome. Targeting inflammation and fibrosis holds the promise to improve the clinical outcome of this major group of cancer patients.”

Fukumura is an associate professor of Radiation Oncology, and Jain is the Cook Professor of Radiation Oncology (Tumour Biology) at Harvard Medical School. Jain is among three recipients of the 2013 National Medal of Science, which was awarded in May 2016. This year Incio received the prestigious American Association of Cancer Research Scholar-in-Training award, the European Association for Cancer Research meeting award and a poster of distinction award at the annual MGH Celebration of Science for his work on obesity and cancer in the Steele Laboratories. Additional co-authors of the Cancer Discovery paper include Hao Liu, MD; Priya Suboj, PhD; Yves Boucher, PhD; Shan Chin, MSc; and other members of the Steele Laboratories. The study also involved collaboration with researchers in the MGH Departments of Pathology, Medicine and Surgery.