We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Preventing "Friendly Fire" in the Pancreas
News

Preventing "Friendly Fire" in the Pancreas

Preventing "Friendly Fire" in the Pancreas
News

Preventing "Friendly Fire" in the Pancreas

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Preventing "Friendly Fire" in the Pancreas"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

25.10.2016 miRNA_bdf6e6e54c64d43f573a5c9cfd5be7b6.jpg

In type 1 diabetes, the body attacks its own insulin-producing cells. Scientists at Helmholtz Zentrum München, partner in the German Center for Diabetes Research, and their colleagues at Technical University of Munich have now reported in the journal ‘PNAS’ about a mechanism used by the immune system to prepare for this attack. They were able to inhibit this process through targeted intervention and are now hoping this will lead to new possibilities for treatment.

Type 1 diabetes is an autoimmune disease in which the body destroys its own beta cells in the pancreas. Researchers are still seeking to find out what causes this malfunction of the immune system in order to intervene therapeutically in the processes. A team led by Dr. Carolin Daniel, group leader at the Institute of Diabetes Research (IDF) of Helmholtz Zentrum München, has now discovered a further piece in solving this puzzle. 

“For the first time, we were able to show that in the affected children an increased number of specific immune cells are found in the blood at the beginning of the autoimmune response,” said Daniel. She and her team had previously analyzed blood samples of children in a biobank established by Professor Anette-Gabriele Ziegler, director of the IDF, within the framework of large-scale cohort studies. 

According to the authors, these special immune cells are so-called insulin-specific T follicular helper cells (TFH). They appear in the lymph nodes, among other organs, and initiate attacks of the immune system by promoting the production of antibodies by B cells. Now the scientists have found increased frequencies of these cells in samples of children with recent onset of islet cell autoimmunity – an early stage of type 1 diabetes. 

In the search for the causes of the increase in TFH cells during autoimmune activation in children, the scientists discovered a previously unknown signaling pathway. “Our analyses showed that a molecule called miRNA92a triggers a chain of molecular events, which ultimately leads to the increase in these immune cells,” said IDF doctoral student Isabelle Serr, explaining the complex mechanism. “In particular, during this process, miRNA92a interferes with the formation of important signaling proteins such as KLF2 and PTEN.” 

Use in therapy and diagnostics 

To check whether this newly discovered mechanism is suitable for therapeutic intervention, the scientists investigated the effect of a so-called antagomir, which specifically binds to miRNA92a molecules and blocks their effect. In an experimental model of type 1 diabetes and in the humanized model, this treatment resulted in a significantly lower autoimmune response. 

“The targeted inhibition of miRNA92a or the downstream signaling pathway could open up new possibilities for the prevention of type 1 diabetes,” said Professor Ziegler. "Furthermore, the insulin-specific TFH cells could serve as biomarkers to determine the treatment success of the insulin vaccinations we perform."  

Advertisement