We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

T Cells Responsible for MS Damage Activated in the Gut

Women framing the gut area of her abdomen.
Credit: Alicia Harper / Pixabay.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system. It is triggered by certain T cells, which infiltrate the brain and spinal cord and attack the insulating myelin sheath around axons. In recent years, researchers have found mounting indications that the gut microbiome plays a substantial role in the activation of these cells. However, the precise location and the underlying mechanisms remained unclear. Using imaging techniques in a mouse model, a team led by Privatdozent Dr. Naoto Kawakami from University of Munich Hospital has now managed to track the microbiome-dependent activation of the cells live – the first time this has been achieved.


For their study, the scientists took an ambitious approach using two-photon imaging for live visualization of the mobility and activation of specific T cells. With a sensor protein, they recorded changes in cellular calcium concentration, allowing them to draw inferences about the activity of the T cells. The encephalitogenic T cells – that is to say, T cells that can cause inflammations in the brain – investigated by the researchers specifically target a protein in the myelin sheath around neurons and play a key role in the development of multiple sclerosis.


Activation in the lamina propria


As the researchers were able to demonstrate, the requisite for activation of these cells takes place in the so-called gut-associated lymphoid tissue (GALT), which is located in the mucous membrane of the gut, more precisely in the lamina propria, a connective tissue layer of the small intestine. However, this only happened when the mice had an intact intestinal microbiome: If the gut was microbe-free, activation did not occur. “Interestingly, activation in the lamina propria seems to be a general mechanism, as even for non-encephalitogenic T cells, which target other molecules in the body, we found that activation depended on the microbiome,” says Kawakami. The scientists hypothesize that the microbiome produces molecules that are recognized by the respective receptors in the T cells and activate the cells in this way.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

In encephalitogenic T cells, the activation turns on genes such that they differentiate into so-called Th17 cells, as the researchers successfully demonstrated. Through this differentiation, the cells develop the properties that enable them to migrate into the central nervous system and trigger inflammations. “Our results make an important contribution to better understanding the development of multiple sclerosis and potentially open up new therapy options in the long term,” says Kawakami.


Reference: Bauer IJ, Fang P, Lämmle KF, et al. Visualizing the activation of encephalitogenic T cells in the ileal lamina propria by in vivo two-photon imaging. PNAS. 2023;120(30):e2302697120. doi:10.1073/pnas.2302697120



This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.