We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Targeting Infectious Diseases, Like COVID-19, With Patient's Own Immune Cells
News

Targeting Infectious Diseases, Like COVID-19, With Patient's Own Immune Cells

Targeting Infectious Diseases, Like COVID-19, With Patient's Own Immune Cells
News

Targeting Infectious Diseases, Like COVID-19, With Patient's Own Immune Cells

Credit: iStock
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Targeting Infectious Diseases, Like COVID-19, With Patient's Own Immune Cells"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The engineering of specific virus-targeting receptors onto a patient’s own immune cells is now being explored by scientists from Duke-NUS Medical School (Duke-NUS), as a potential therapy for controlling infectious diseases, including the COVID-19-causing virus, SARS-CoV-2. This therapy that has revolutionized the treatment of patients with cancer has also been used in the treatment of other infectious diseases such as Hepatitis B virus (HBV), as discussed by the School’s researchers in a commentary published in the Journal of Experimental Medicine.

This therapy involves extracting immune cells, called T lymphocytes, from a patient’s blood stream and engineering one of two types of receptors onto them: chimeric antigen receptors (CAR) or T cell receptors (TCR). TCRs are naturally found on the surfaces of T lymphocytes while CARs are artificial T cell receptors that are generated in the laboratory. These receptors allow the engineered T lymphocytes to recognize cancerous or virus infected cells.

“This therapy is classically used in cancer treatment, where the lymphocytes of the patients are redirected to find and kill the cancer cells. However, its potential against infectious diseases and specific viruses has not been explored. We argue that some infections, such as HIV and HBV, can be a perfect target for this therapy, especially if lymphocytes are engineered using an approach that keeps them active for a limited amount of time to minimize potential side effects,” said Dr Anthony Tanoto Tan, Senior Research Fellow at the Duke-NUS’ Emerging Infectious Diseases (EID) program and the lead author of this commentary.

This type of immunotherapy requires specialized personnel and equipment, and it needs to be administered indefinitely. This makes it cost-prohibitive for treating most types of viral infections. However, in the case of HBV infections, for example, current anti-viral treatments merely suppress viral replication and cure less than 5% of patients. Treating these patients with a combination of anti-virals and CAR/TCR T cells could be a viable option. The team’s approach using mRNA electroporation to engineer CAR/TCR T cells limits their functional activity to a short period of time, and hence provides enhanced safety features suited for its deployment in patients with chronic viral diseases.

“We demonstrated that T cells can be redirected to target the coronavirus responsible for SARS. Our team has now begun exploring the potential of CAR/TCR T cell immunotherapy for controlling the COVID-19-causing virus, SARS-CoV-2, and protecting patients from its symptomatic effects,” said Professor Antonio Bertoletti from the Duke-NUS’ EID program, who is the senior author of this commentary.

“Infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating the development of novel and innovative therapeutics. Although immunotherapy is most commonly associated with the treatment of cancer or inflammatory diseases such as arthritis, this commentary accentuates the evolving role of this specialized treatment strategy for various infectious diseases,” said Professor Patrick Casey, Senior Vice Dean for Research at Duke-NUS.

Reference

Bertoletti and Tan. (2020) Challenges of CAR- and TCR-T cell–based therapy for chronic infections. Journal of Experimental Medicine. DOI: https://doi.org/10.1084/jem.20191663

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement