We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

TxCell, UBC Collaborate

TxCell, UBC Collaborate

TxCell, UBC Collaborate

TxCell, UBC Collaborate

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "TxCell, UBC Collaborate"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

TxCell SA has announced the signature of a strategic R&D collaboration agreement with the University of British Columbia (UBC) in Vancouver, Canada, a leading global center for multidisciplinary research and teaching. “As stated in our recent strategic update, TxCell continues to intensify its efforts on its ENTrIA platform of engineered regulatory T cells. TxCell has launched a third CAR-Treg collaboration in order to strengthen its recently initiated transplantation program,” said Stéphane Boissel, Chief Executive Officer of TxCell.

“Thanks to TxCell’s unparalleled expertise in the Treg space, we have secured access to the most advanced CAR-Treg programs worldwide. We expect this to help us achieve our goal of launching a first-in-man clinical study with a first CAR-Treg in 2018.” This collaboration agreement covers the development of a CAR-Treg-based cellular immunotherapy for the prevention of graft rejection in the context of Solid Organ Transplantation (SOT). Activities relating to this program will be primarily conducted in the UBC laboratories.

The activities will be led by Professor Megan Levings, who earlier this year established a first preclinical proof of concept with human HLA-A2-specific CAR-Treg cells in a preclinical transplantation model1. UBC will conduct non-clinical pharmacology studies with CAR-Treg cells with the aim of initiating a first-in-man study in transplantation patients as soon as possible. “The recent in vivo proof of concept published by UBC in a leading international scientific journal is a critical milestone in the pioneering field of CAR-Treg cells,” said Arnaud Foussat, Senior Vice President, Corporate Development and Head of External Collaborations & Alliance Management of TxCell.

“In contrast to existing approaches based on polyclonal Tregs already tested in clinical trials, we have chosen to bring antigen specificity through a CAR, with the aim of increasing the potential to address the vast unmet medical need in transplantation. We are honoured that Prof. Levings has chosen TxCell as its partner for this program and we are looking forward to our collaboration towards a common goal of initiating a first-in-man study as rapidly as possible.”

“TxCell has unique experience in the development of Treg-based cellular immunotherapies and we are excited to collaborate to develop CAR-Treg therapy for unmet medical needs in transplantation,” said Dr. Megan Levings, Professor, Department of Surgery, UBC and Head, Childhood Diseases Research Theme, BC Children's Hospital. “The collaboration will allow us to assess the potential of CAR-Treg cells in preclinical models of solid organ transplantation.”

The UBC team demonstrated that, in a preclinical xenogeneic Graft-vs-Host Disease (GvHD) model, human CAR-engineered Treg cells that are specific for the molecule HLA-A2 were more effective than polyclonal Treg cells in reducing GvHD-related inflammation. The model used by Dr. Levings’ team is based on xenogeneic GvHD induced in immunodeficient mice through the injection of human HLA-A2+ white blood cells. These human white blood cells (graft) attack the immunodeficient mice (host), resulting in an inflammatory reaction (Graft-vs-Host Disease, GvHD).

The CAR used in this experiment was designed to specifically recognize the HLA-A2 molecule found solely on graft cells. These data will constitute the basis for the first product development under the new TxCell/UBC collaboration announced. Whilst the UBC team is focused on product development activities, it will in parallel perform research activities in the CAR-Treg field with the aim of optimizing and broadening the new product platform for transplantation. TxCell has an exclusive option on programs and products developed under this agreement. Financial terms of the collaboration have not been disclosed.