We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Water-Borne Viruses Eliminated With New Filter Membrane

Water-Borne Viruses Eliminated With New Filter Membrane

Water-Borne Viruses Eliminated With New Filter Membrane

Water-Borne Viruses Eliminated With New Filter Membrane

Credit: rony michaud/ Pixabay
Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Water-Borne Viruses Eliminated With New Filter Membrane"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Viruses can spread not only via droplets or aerosols like the new coronavirus, but in water, too. In fact, some potentially dangerous pathogens of gastrointestinal diseases are water-borne viruses.

To date, such viruses have been removed from water using nanofiltration or reverse osmosis, but at high cost and severe impact on the environment. For example, nanofilters for viruses are made of petroleum-based raw materials, while reverse osmosis requires a relatively large amount of energy.

Environmentally friendly membrane developed

Now an international team of researchers led by Raffaele Mezzenga, Professor of Food & Soft Materials at ETH Zurich, has developed a new water filter membrane that is both highly effective and environmentally friendly. To manufacture it, the researchers used natural raw materials.

The filter membrane works on the same principle that Mezzenga and his colleagues developed for removing heavy or precious metals from water. They create the membrane using denatured whey proteins that assemble into minute filaments called amyloid fibrils. In this instance, the researchers have combined this fibril scaffold with nanoparticles of iron hydroxide (Fe-O-HO).

Manufacturing the membrane is relatively simple. To produce the fibrils, whey proteins derived from milk processing are added to acid and heated to 90 degrees Celsius. This causes the proteins to extend and attach to each other, forming fibrils. The nanoparticles can be produced in the same reaction vessel as the fibrils: the researchers raise the pH and add iron salt, causing the mixture to "disintegrate" into iron hydroxide nanoparticles, which attach to the amyloid fibrils. For this application, Mezzenga and his colleagues used cellulose to support the membrane.

This combination of amyloid fibrils and iron hydroxide nanoparticles makes the membrane a highly effective and efficient trap for various viruses present in water. The positively charged iron oxide electrostatically attracts the negatively charged viruses and inactivates them. Amyloid fibrils alone wouldn't be able to do this because, like the viral particles, they are also negatively charged at neutral pH. However, the fibrils are the ideal matrix for the iron oxide nanoparticles.

Various viruses eliminated highly efficiently

The membrane eliminates a wide range of water-borne viruses, including nonenveloped adenoviruses, retroviruses and enteroviruses. This third group can cause dangerous gastrointestinal infections, which kill around half a million people - often young children in developing and emerging countries - every year. Enteroviruses are extremely tough and acid-resistant and remain in the water for a very long time, so the filter membrane should be particularly attractive to poorer countries as a way to help prevent such infections.

Moreover, the membrane also eliminates H1N1 flu viruses and even the new SARS-CoV-2 virus from the water with great efficiency. In filtered samples, the concentration of the two viruses was below the detection limit, which is equivalent to almost complete elimination of these pathogens.

"We are aware that the new coronavirus is predominantly transmitted via droplets and aerosols, but in fact, even on this scale, the virus requires being surrounded by water. The fact that we can remove it very efficiently from water impressively underlines the broad applicability of our membrane," says Mezzenga.

While the membrane is primarily designed for use in wastewater treatment plants or for drinking water treatment, it could also be used in air filtration systems or even in masks. Since it consists exclusively of ecologically sound materials, it could simply be composted after use - and its production requires minimum energy. These traits give it an excellent environmental footprint, as the researchers also point out in their study. Because the filtration is passive, it requires no additional energy, which makes its operation carbon neutral and of possible use in any social context, from urban to rural communities.

Reference: Palika A, Armanious A, Rahimi A, et al. An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nat Nanotechnol. 2021:1-8. doi: 10.1038/s41565-021-00920-5

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.