We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

NHS Study Investigates CytoSure Constitutional v3 Array for Developmental Disorder Research

NHS Study Investigates CytoSure Constitutional v3 Array for Developmental Disorder Research content piece image
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

A new study has identified that the CytoSure™ Constitutional v3 array design could have potential use as a powerful tool for detection of small pathogenic intragenic deletions and duplications in developmental disorder research.

In a recent npj Genomic Medicine paper, Oxford Gene Technology’s (OGT - A Sysmex Group Company) CytoSure™ Constitutional v3 array design was shown to significantly improve reporting rate and to have potential use as a powerful tool for detection of small pathogenic intragenic deletions and duplications in developmental disorder (DD) research. The study was led by a consortium of NHS genomic medicine centers in the UK and compared the enhanced exon-level gene coverage of the v3 array to a conventional array design.

The study consisted of a large cohort of 27,756 patient samples. These were investigated with either OGT’s exon targeted CytoSure Constitutional v3 array, based on up-to-date content from the Deciphering Developmental Disorders (DDD) study and ClinGen (Clinical Genome Resource), or a conventional array design based on content from the ISCA (International Standards for Cytogenomic Arrays) consortium with a large number of backbone probes and gene coverage based on an earlier version DD/ID databases.

The results demonstrated that the v3 array had a significant increase in reporting rate of 4.49%, confirming that the enhanced, targeted exon-level coverage design enables more reportable copy number variations (CNVs) to be identified than with traditional arrays. The authors of the paper believe the findings of the research will help to enable clinical researchers to assess optimal testing pathways when integrating genomics into labs. They also note that targeted arrays offer robust CNV detection and provide a stable, proven platform with both simple data analysis and minimal demands on bioinformatics.

Lead author Jana Jezkova from the All Wales Medical Genomics Service, Cardiff and Vale University Health Board, Cardiff noted “In this paper, we evaluated the performance of a targeted oligonucleotide array CGH with enhanced exon-level coverage of genes associated with developmental disorders (CytoSure Constitutional v3). The study was conducted across multiple genomic medicine centres in a state-funded routine National Health Service (NHS) setting. Our results show that this array design leads to a significant improvement in reporting rate and provides a powerful tool for detection of small pathogenic intragenic deletions and duplications in the clinical setting. Although next generation sequencing is increasingly being used to simultaneously identify copy number changes along with single nucleotide variants, at this time, targeted arrays offer a robust method of copy number detection and offer a stable, proven platform with simple data analysis and minimal demands on bioinformatics capacity. Given the drive towards national genomic-medicine initiatives to provide consistent and equitable care for patients, we believe that the findings presented in our paper will appeal to publicly funded laboratories as well as genetics teams and referring clinicians. Our findings will allow the readers to assess optimal analysis pathways when integrating genomics into healthcare.”

OGT’s CytoSure Constitutional v3 arrays feature the most up-to-date and relevant ID/DD content with probes for up to 502 highly-targeted genes identified by ClinGen and the DDD project—enabling detection of single exon aberrations. OGT’s array design delivers high probe density across the exons and introns of important genes that enables improved detection of small (<500bp) deletions and duplications that may otherwise be missed or require manual calling on other older array designs.