We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
AI Predicts Schizophrenia Symptoms in At-Risk Population
News

AI Predicts Schizophrenia Symptoms in At-Risk Population

AI Predicts Schizophrenia Symptoms in At-Risk Population
News

AI Predicts Schizophrenia Symptoms in At-Risk Population

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "AI Predicts Schizophrenia Symptoms in At-Risk Population"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

University of Alberta researchers have taken another step forward in developing an artificial intelligence tool to predict schizophrenia by analyzing brain scans.

In recently published research, the tool was used to analyze functional magnetic resonance images of 57 healthy first-degree relatives (siblings or children) of schizophrenia patients. It accurately identified the 14 individuals who scored highest on a self-reported schizotypal personality trait scale.

Schizophrenia, which affects 300,000 Canadians, can cause delusions, hallucinations, disorganized speech, trouble with thinking and lack of motivation, and is usually treated with a combination of drugs, psychotherapy and brain stimulation. First-degree relatives of patients have up to a 19 per cent risk of developing schizophrenia during their lifetime, compared with the general population risk of less than one per cent.

"Our evidence-based tool looks at the neural signature in the brain, with the potential to be more accurate than diagnosis by the subjective assessment of symptoms alone," said lead author Sunil Kalmady Vasu, senior machine learning specialist in the Faculty of Medicine & Dentistry.

Kalmady Vasu noted that the tool is designed to be a decision support tool and would not replace diagnosis by a psychiatrist. He also pointed out that while having schizotypal personality traits may cause people to be more vulnerable to psychosis, it is not certain that they will develop full-blown schizophrenia.

"The goal is for the tool to help with early diagnosis, to study the disease process of schizophrenia and to help identify symptom clusters," said Kalmady Vasu, who is also a member of the Alberta Machine Intelligence Institute.

The tool, dubbed EMPaSchiz (Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction), was previously used to predict a diagnosis of schizophrenia with 87 per cent accuracy by examining patient brain scans. It was developed by a team of researchers from U of A and the National Institute of Mental Health and Neurosciences in India. The team also includes three members of the U of A's Neuroscience and Mental Health Institute--computing scientist and Canada CIFAR AI Chair Russ Greiner from the Faculty of Science, and psychiatrists Andrew Greenshaw and Serdar Dursun, who are authors on the latest paper as well.

Kalmady Vasu said next steps for the research will test the tool's accuracy on non-familial individuals with schizotypal traits, and to track assessed individuals over time to learn whether they develop schizophrenia later in life.

Kalmady Vasu is also using the same principles to develop algorithms to predict outcomes such as mortality and readmissions for heart failure in cardiovascular patients through the Canadian VIGOUR Centre.

"Severe mental illness and cardiovascular problems cause functional disability and impair quality of life," Kalmady Vasu said. "It is very important to develop objective, evidence-based tools for these complex disorders that afflict humankind."

Reference:

Kalmady SV, Paul AK, Greiner R, et al. Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives. npj Schizophrenia. 2020;6(1):1-3. doi:10.1038/s41537-020-00119-y

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement