We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Deadly Parasites Hunted Down Using Automated Imaging Techniques

A close up of a microscope.
Credit: kkolosov / Pixabay.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Schistosomiasis, a parasitic disease affecting millions worldwide, poses a significant public health and economic burden, particularly in impoverished regions. To combat this disease and achieve World Health Organization (WHO) targets for control and elimination, accurate and accessible diagnostic tools are essential. Currently, microscopy is the standard for diagnosing schistosomiasis, but it is time-consuming, operator-dependent, and requires specialized expertise, making it challenging for resource-limited areas.


To address these challenges, researchers developed the Schistoscope, an innovative optical tool equipped with an autofocusing and automated slide scanning system. This device captures microscopy images of urine samples, enabling efficient detection of Schistosoma haematobium eggs, a common cause of urogenital schistosomiasis. In a study published in the Journal of Medical Imaging, the researchers aimed to create a robust dataset and develop a two-stage diagnostic framework using deep learning to accurately identify and count S. haematobium (SH) eggs in field settings.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

First, the researchers created an SH dataset consisting of 12,051 images of urine samples collected in a rural area in central Nigeria and captured using the Schistoscope device. They manually annotated the images, marking the eggs and differentiating them from artifacts such as crystals, glass debris, air bubbles, and fibers, which can hinder accurate diagnosis.


The proposed two-stage diagnostic framework consists of a DeepLabv3 with a MobilenetV3 backbone deep convolutional neural network, trained using transfer learning on the SH dataset. In the first stage, the framework performs semantic segmentation to identify candidate SH eggs in the captured images. The second stage refines the segmentation by fitting overlapping ellipses, effectively separating boundaries of clustered eggs, leading to more accurate egg counts.


Schematics of the proposed two-stage diagnosis framework urogenital schistosomiasis with DeepLabV3-MobileNetV3 deep learning architecture for semantic segmentation of eggs and refined segmentation for overlapping eggs separation and count. 


To demonstrate the field applicability of the proposed framework, the researchers implemented it on an edge AI system (Raspberry Pi + Coral USB accelerator) and tested it on 65 clinical urine samples obtained in a field setting in Nigeria. The results showed high sensitivity, specificity, and precision (percentages: 93.75, 93.94, and 93.75, respectively), with the automated egg count closely correlated to the manual count by an expert microscopist.


This SH dataset serves as a valuable resource for training and evaluating the diagnostic framework, providing a diverse set of images with varying degrees of difficulty due to artifacts.


Professor Jan Carel Diehl, of Delft University of Technology’s Department of Sustainable Design Engineering and corresponding author for the study, remarks, “By automating the egg detection process, the Schistoscope and the proposed diagnostic framework offer a promising solution for the rapid and accurate diagnosis of urogenital schistosomiasis, particularly in low-resource settings. Future studies will further validate the framework's performance and compare it with other diagnostic methods, such as schistosome circulating antigen detection and DNA-based assays, to establish its role in schistosomiasis monitoring and control.”


Overall, this work represents a significant step towards improving diagnostics and combating schistosomiasis, a disease that disproportionately affects vulnerable populations in endemic regions.


Reference: Oyibo P, Meulah B, Bengtson M, et al. Two-stage automated diagnosis framework for urogenital schistosomiasis in microscopy images from low-resource settings. J Med Imag. 2023;10(04). doi: 10.1117/1.JMI.10.4.044005


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.