We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Flexible "Brain" for AI Cuts Energy Use by 80%

Flexible "Brain" for AI Cuts Energy Use by 80%

Flexible "Brain" for AI Cuts Energy Use by 80%

Flexible "Brain" for AI Cuts Energy Use by 80%

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Flexible "Brain" for AI Cuts Energy Use by 80%"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Scientists at Osaka University built a new computing device from field-programmable gate arrays (FPGA) that can be customized by the user for maximum efficiency in artificial intelligence applications. Compared with currently used rewireable hardware, the system increases circuit density by a factor of 12. Also, it is expected to reduce energy usage by 80%. This advance may lead to flexible artificial intelligence (AI) solutions that provide enhanced performance while consuming much less electricity.

AI is becoming a part of everyday life for almost all consumers. Ridesharing smartphone apps like Uber, Gmail's spam filters, and smart-home devices like Siri and Nest all rely on AI. However, implementing these algorithms often require a large amount of computing power, which means large electricity bills, as well as big carbon footprints. Systems that could--like the human brain--be rewired to optimize the computer circuitry for each task would provide greatly enhanced energy efficiency.

Normally, we think of hardware, which includes the physical logic gates and transistors of a computer's processor, as fixed by the manufacturer. However, field-programmable gate arrays are specialized logical elements that can be rewired "in the field" by the user for custom logic applications. The research team used non-volatile "via-switches" that remain connected until the user decided to reconfigure them. Using novel nanofabrication methods, they were able to pack twelve times more elements into a grid-like "crossbar" layout. By reducing the distance electronic signals need to be routed, the devices ended up needing 80% less power.

"Our system based on field-programmable gate arrays has a very fast design cycle. It can be reprogrammed daily if desired to get the most computing power for each new AI application," first author Masanori Hashimoto says. The use of via-switches also eliminates the need for the programing silicon area that was necessary in previous FPGA devices.

"Via-switch FPGA is suitable as a high-performance implementation platform of the latest AI algorithms," says senior author Jaehoon Yu.

Reference: https://researchmap.jp/read0118551/published_papers/17115032

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.