We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Sign up to read this article for FREE!

After signing up, you'll start to receive regular news updates from us.

Improved Quality Control Processing of Peptide-Centric LC-MS Proteomics Data

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

Motivation:
In the analysis of differential peptide peak intensities (i.e. abundance measures), LC-MS analyses with poor quality peptide abundance data can bias downstream statistical analyses and hence the biological interpretation for an otherwise high-quality dataset. Although considerable effort has been placed on assuring the quality of the peptide identification with respect to spectral processing, to date quality assessment of the subsequent peptide abundance data matrix has been limited to a subjective visual inspection of run-by-run correlation or individual peptide components. Identifying statistical outliers is a critical step in the processing of proteomics data as many of the downstream statistical analyses [e.g. analysis of variance (ANOVA)] rely upon accurate estimates of sample variance, and their results are influenced by extreme values.

Results:
Comparison with current method (run-by-run correlation) demonstrates a significantly better rate of identification of outlier runs by the multivariate strategy. Simulation studies also suggest that this strategy significantly outperforms correlation alone in the identification of statistically extreme liquid chromatography-mass spectrometry (LC-MS) runs.

The article is published online in Bioinformatics and is free to access.