We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Novel Online Bioinformatics Tool Significantly Reduces Time Of Multiple Genome Analysis
News

Novel Online Bioinformatics Tool Significantly Reduces Time Of Multiple Genome Analysis

Novel Online Bioinformatics Tool Significantly Reduces Time Of Multiple Genome Analysis
News

Novel Online Bioinformatics Tool Significantly Reduces Time Of Multiple Genome Analysis

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Novel Online Bioinformatics Tool Significantly Reduces Time Of Multiple Genome Analysis "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

With a rising global population leading to increased pressure on food resources, it is becoming ever more essential that crop breeding programmes work to enhance the security of global food sources.

A key aspect of this is utilising breakthroughs in genomics research to guide the selection of the individuals to incorporate in breeding schemes. It is possible to relate the DNA of a species to its physical characteristics, or phenotypes, and identify areas of DNA responsible for desirable traits such as high yield or disease resistance.

Crop breeding programmes can make use of this genetic information to ensure that the preferred trait is inherited by future crop yields, helping to secure future food supply. However, the majority of tools for the analysis of DNA are designed for diploid organisms, such as humans, with one set of chromosomes, and perform poorly when applied to polyploid species such as bread wheat (Triticum aestivum L.) which has multiple sets of chromosomes.

Scientists from The Genome Analysis Centre (TGAC) and John Innes Centre have developed a bioinformatics pipeline, PolyMarker that facilitates the design of genomic specific primers for polyploid species. Once identified, these primers can be used to ascertain whether or not an individual organism has the genetic variation associated with a given trait.

As an open access tool, researchers and crop breeders can submit their own data to PolyMarker and the online tool will return suggested design primers to identify genetic variations that tag vital traits in their crop samples, with a significantly reduced turnaround time compared to the current manual method.

“The process of manually designing primers to validate in hexaploid wheat is time consuming, with PolyMarker we have reduced the design time from around a week to twenty minutes,” said lead author Ricardo Ramirez-Gonzalez, PhD student at TGAC.

“PolyMarker has already demonstrated its value having been developed and applied in a research project where it identified genetic markers that signal resistance to the wheat yellow rust pathogen (Puccinia striiformis f. sp. tritici). This disease is responsible for devastating bread wheat crops and has developed ‘Warrior’ strains capable of infecting individuals previously believed to have tolerance.”

Mario Caccamo, senior author of the paper, said: “The development of PolyMarker is a great example of the benefits of multidisciplinary research. In one new software tool, we have applied expertise in advanced algorithm development, knowledge on genetics and principles of genome architecture.”

The innovative online tool has also been used to identify 820,000 genetic markers for the current TransPlant project at TGAC, a European initiative aimed at the provision of a trans-national infrastructure for plant genomic science, as well as 80,000 markers for the CerealsDB project for the analysis of the wheat genome, in collaboration with the University of Bristol.

Advertisement