We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Rectangle Image
News

Precise Informatics Platform Targets Tau Tangles

Rectangle Image
News

Precise Informatics Platform Targets Tau Tangles

Neurons stained for MAP tau protein show MAP tau in red and yellow (where there is co-staining with MAP2). DNA is shown in blue using the DAPI stain which highlights the nuclei. Credit: GerryShaw [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]
Read time:
 

Researchers have developed an artificial intelligence platform to detect a range of neurodegenerative diseases in human brain tissue samples, including Alzheimer’s disease and chronic traumatic encephalopathy, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published in the Nature medical journal Laboratory Investigation. Their discovery will help scientists develop targeted biomarkers and therapeutics, resulting in a more accurate diagnosis of complex brain diseases that improve patient outcomes.


The buildup of abnormal tau proteins in the brain in neurofibrillary tangles is a feature of Alzheimer’s disease, but it also accumulates in other neurodegenerative diseases, such as chronic traumatic encephalopathy and additional age-related conditions. Accurate diagnosis of neurodegenerative diseases is challenging and requires a highly-trained specialist.  


Researchers at the Center for Computational and Systems Pathology at Mount Sinai developed and used the Precise Informatics Platform to apply powerful machine learning approaches to digitized microscopic slides prepared using tissue samples from patients with a spectrum of neurodegenerative diseases.  Applying deep learning, these images were used to create a convolutional neural network capable of identifying neurofibrillary tangles with a high degree of accuracy directly from digitized images.


“Utilizing artificial intelligence has great potential to improve our ability to detect and quantify neurodegenerative diseases, representing a major advance over existing labor-intensive and poorly reproducible approaches,” said lead investigator John Crary, MD, PhD, Professor of Pathology and Neuroscience at the Icahn School of Medicine at Mount Sinai. “Ultimately, this project will lead to more efficient and accurate diagnosis of neurodegenerative diseases.”


This is the first framework available for evaluating deep learning algorithms using large-scale image data in neuropathology. The Precise Informatics Platform allows for data managements, visual exploration, object outlining, multi-user review, and evaluation of deep learning algorithm results.


Researchers at the Center for Computational and Systems Pathology at Mount Sinai have used use advanced computer science and mathematical techniques coupled with cutting-edge microscope technology, computer vision, and artificial intelligence to more accurately classify a broad array of diseases.

This article has been republished from materials provided by Mount Sinai. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference: Signaevsky, M., Prastawa, M., Farrell, K., Tabish, N., Baldwin, E., Han, N., … Crary, J. F. (2019). Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy. Laboratory Investigation, 1. https://doi.org/10.1038/s41374-019-0202-4

Advertisement