We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Stem Cells Grown in Media Free of Animal-derived Compounds

Stem Cells Grown in Media Free of Animal-derived Compounds content piece image
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

A team of scientists from the New York Stem Cell Foundation (NYSCF) Research Institute reported Friday in Stem Cell Research and Therapy that they have made valuable progress toward creating clinical-grade cells for treatment of bone disease and injury. In their study, the team identified two types of growth media that could support effective expansion of mesenchymal progenitor (MP) cells from stem cells in a clinically compatible, Good Manufacturing Practice (GMP) setting. GMP guidelines require that cells to be used as therapies are created without the use of animal-derived substances.

“NYSCF is committed to bringing effective cellular therapies to patients in need,” says NYSCF CEO Susan L. Solomon. “To establish these therapies, it is essential to produce high-quality cells that meet safety requirements for clinical use, which is a step that this research is helping us achieve.”

MP cells are important because they resemble mesenchymal stem cells (MSCs). MSCs can go on to form a variety of cell types, including bone cells, cartilage cells, muscle cells, and fat cells, and can modulate the behavior of many other types of cell types in the body. They are a frequent target for cell therapies in which healthy cells are introduced into the body to treat diseases or reconstruct tissues and organs. However, MSCs are often scarce and do not expand well enough to provide the amount of cells needed for an effective therapy. MP cells, on the other hand, can be produced in large numbers for each patient when generated from induced pluripotent stem cells (iPSCs), and therefore hold extraordinary promise for the treatment of blood, heart, and immune diseases as well as repair of damaged bone and cartilage.

“MP cells have been derived from iPSCs before, but never in a growth medium that does not contain animal-derived compounds,” says NYSCF – Ralph Lauren Senior Investigator Giuseppe Maria de Peppo, PhD, who led the study. “We are glad to see that MP cells grown in GMP-compliant media showed the same biological and functional properties as those grown in research-grade media that contains animal products. The results will help us plan for movement of these cells out of the lab and into the clinic.”

To test his question, the researchers compared MP cells grown in a medium supplemented with fetal bovine serum, a product derived from cows, to MP cells grown in two different media without animal products (referred to as “xeno-free”)—one supplemented with human platelet lysates and one commercial high-performance GMP medium (AllegroTM Unison Medium). The team found that while MP cells grown in the xeno-free and GMP media showed slightly different cell morphology, expansion potential, gene expression, and cytokine profile than those grown in the medium containing fetal bovine serum, the cells were healthy and functional in these new conditions. Collectively, the results show promise for the eventual application of MP cells in cellular therapies.

This article has been republished from materials provided by The New York Stem Cell Foundation. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Mcgrath, M., Tam, E., Sladkova, M., Almanaie, A., Zimmer, M., & Peppo, G. M. (2019). GMP-compatible and xeno-free cultivation of mesenchymal progenitors derived from human-induced pluripotent stem cells. Stem Cell Research & Therapy, 10(1). doi:10.1186/s13287-018-1119-3