We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Systematic Error Detection in Experimental High-throughput Screening
News

Systematic Error Detection in Experimental High-throughput Screening

Systematic Error Detection in Experimental High-throughput Screening
News

Systematic Error Detection in Experimental High-throughput Screening

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Systematic Error Detection in Experimental High-throughput Screening"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Systematic error can often have a negative impact on the hit selection process during High Throughput Screening (HTS), as it can obscure important biological and chemical properties of screened compounds. To combat this a selection of error correction methods have been developed to eliminate them, however, these methods can often introduce a bias into data sets that do not contain any systematic errors. Therefore scientists from the two Canadian Universities, the University of Quebec and the McGill University, have tested three statistical procedures to assess the presence of systematic error in experimental HTS data.

They discovered that the successful assessment of the presence of systematic error in experimental HTS assays is possible by using a t-test. 

Abstract

High-throughput screening (HTS) is a key part of the drug discovery process during which thousands of chemical compounds are screened and their activity levels measured in order to identify potential drug candidates (i.e., hits). Many technical, procedural or environmental factors can cause systematic measurement error or inequalities in the conditions in which the measurements are taken.
Such systematic error has the potential to critically affect the hit selection process. Several error correction methods and software have been developed to address this issue in the context of experimental HTS [1-7]. Despite their power to reduce the impact of systematic error when applied to error perturbed datasets, those methods also have one disadvantage - they introduce a bias when applied to data not containing any systematic error [6]. Hence, we need first to assess the presence of systematic error in a given HTS assay and then carry out systematic error correction method if and only if the presence of systematic error has been confirmed by statistical tests. 

The paper, entitled 'Systematic error detection in experimental high-throughput screening' is freely available online through BMC Bioinformatics

Advertisement