We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Human Pluripotent Stem Cells Successfully 3D Printed

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

A team of researchers at the University of Wollongong-headquartered ARC Centre of Excellence for Electromaterials Science (ACES) have discovered a way to print human induced pluripotent stem cells (iPSCs) using a custom developed bioink.

ACES stem cell expert Associate Professor Jeremy Crook, based at the University of Wollongong, said iPSCs can be generated from cells of any living person, and be 3D printed to incorporate properties of the natural cell environment.

“This flexible 3D tissue engineering technology enables iPSCs generated from an individual’s own body to divide after printing and differentiate in a way that will allow us to form and replace any tissue type of the body,” he said.

“By developing this further we will be able to generate healthy and diseased tissues for research, identifying better drugs for medicine and replacing or repairing damaged tissues or organs due to injury or disease.”

The team has already begun preclinical safety studies with the aim of advancing tissues further for use in medical research, regenerative medicine and personalised medicine.

Using tissues developed from clinically-compliant bioinks with iPSCs will allow therapeutic transplants with a reduced risk of immune rejection.

“There’s no doubt that sometime in the future engineering tissues by bioprinting iPSCs will be routinely performed for surgical treatments of patients with damaged or diseased tissue.

"Other work in the pipeline involves disease modelling and related drug effect studies.”

This team of researchers previously reported the ability to print 3D structures that support the growth of brain-like tissue from human neural stem cells, towards better understanding the function and behaviour of the brain.

“Such advances are only possible through a combination of a diverse array of skills spanning materials science, cell biology and mechatronic engineering,” ACES Director Professor Gordon Wallace said.

“This convergence means we are making rapid progress towards outcomes of clinical significance.”

This article has been republished from materials provided by the University of Wollongong. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:


Gu, Q., Tomaskovic-Crook, E., Wallace, G. G., & Crook, J. M. (2017). 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation. Advanced Healthcare Materials, 1700175. doi:10.1002/adhm.201700175