Putting a Human Heart & Fat on a Chip

Video   Oct 19, 2016

 

Drug discovery and development to date has relied on animal models, which are useful, but fail to resemble human physiology. The discovery of human induced pluripotent stem (iPS) cells has led to the emergence of a new paradigm of drug screening using human disease-specific organ-models. One promising approach to produce these systems is employing microfluidic devices, which can simulate 3D tissue structure and function. Using microfabrication techniques we have developed two microphysiological platforms (MPSs) that incorporate in vitro models of human cardiac and adipose tissue. Both MPSs consist of three functional components: a tissue culture chamber mimicking geometrical organ-specific in vivo properties; “vasculature-like” media channels enabling a precise and computationally predictable delivery of compounds (nutrients, drugs); “endothelial-like” barriers protecting the tissues from shear forces while allowing diffusive transport. Both organ-chips are able to create physiological micro-tissues that are viable and functional for multiple weeks. The developed chips are the first systems that combine human genetic background, physiologically relevant tissue structure and “vasculature-like” perfusion. Pharmacological studies on the heart-chip show IC50/EC50 values more consistent with data from primary tissue references compared to cellular scale studies. Both MPSs are extremely versatile and can be applied for drug toxicity screening and fundamental research.

 
 

Recommended Videos

Droplet Microfluidics (A "Bad and Boujee" Rap Parody)

Video

Rap parody wins the MicroTAS Video Competition 2017.

WATCH NOW

Smoking Human Lung Small Airway on a Chip

Video

In this video, Wyss Founding Director Donald Ingber and Technology Development Fellow Kambez Benam explain how the integrated smoking device mimics normal cigarette smoke exposure and how it can impact research into the causes of COPD and into new biomarkers and therapeutics.

WATCH NOW

SPEDs: Self-powered, Paper-based Electrochemical Devices

Video

The self-powered, paper-based electrochemical devices, or SPEDs, are designed for sensitive diagnostics at the “point-of-care,” or when care is delivered to patients, in regions where the public has limited access to resources or sophisticated medical equipment.

WATCH NOW

 

Comments | 0 ADD COMMENT

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE