We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy

© 2019 Technology Networks, all rights reserved

How Does the Brain Represent the Objects We Touch?

Article   Aug 01, 2018

by Rongala Udaya, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy

During infancy we perform an enormous amount of motor-babbling (random body part movements), which provides the brain with information from different sensory modalities (touch, muscle spindles, vision) from across the human body. The Brain integrates this information to form an overall sense of oneself and surrounding world. With our research, we intended to understand how the brain represents the 'touch' information. Understanding how the brain represents touch offers a better insight to the bigger question, “how does the brain work?”, and also enables development of better neuro-prosthesis and artificial intelligence for robotics.

To realize this objective, we have taken an integrated approach of combining engineering, neuro-physiology and neuro-computational modelling to create a functional artificial tactile system.

First, we used an in-house developed artificial fingertip sensor to mimic the properties of tactile afferents (sensors) present in human hand.

Second, we developed a neuron model of Cuneate Nucleus Neuron based on previous neuro-physiological studies. These neurons process the tactile information first, before transmitting them to the central nervous system. We also developed a synaptic learning rule for these neurons, based on existing hypotheses and assumptions.

Third, we modelled a biological neural networks architecture to join the artificial fingertip with the cuneate neuron and synaptic learning model.

Fourth, we ran the simulation across inputs from random textures and shapes, and let the model learn based on some ground rules.

This whole functional integration of an artificial tactile system evolved to learn the correlations in the artificial fingertip sensors and was able to identify both past and novel tactile sensory experiences.


From a neuroscience perspective, we were able to investigate what form of representations the brain could automatically learn from tactile interactions with the world. From an engineering perspective, we were able to create a robust and dynamic learning algorithm, based on random tactile experiences.

Reference:
RONGALA, U. B., Spanne, A., Mazzoni, A., Bengtsson, F., Oddo, C., & Jörntell, H. (2018). Intracellular dynamics in cuneate nucleus neurons support self-stabilizing learning of generalizable tactile representations. Frontiers in Cellular Neuroscience, 12, 210.

Acknowledgments: This works was a collective effort of all the authors from Scuola Superiore Sant’Anna, Pisa, Italy and Lund University, Sweden. This work was supported by, the Ministry of Education of the Italian Republic, the Swedish Research Council and the EU FET Grant.

RELATED ARTICLES

Case Study: Dr. Kaelberer Validates a Neuroepithelial Circuit using Milo

Article

How does the gut talk to the brain? In this new case study from ProteinSimple, we find out how Melanie Maya Kaelberer, a Postdoctoral Associate at Duke University, is using Single-Cell Western platform Milo to answer the question of how the gut can rapidly communicate with cranial nerves.

READ MORE

Microglia Transmit Pain to the Brain During Stress

Article

Chronic pain is a multifaceted disorder that causes profound disability worldwide. It has long been known that psychological stress contributes to adverse chronic pain outcomes in patients, but it is unclear how this is initiated or amplified by stress. Now, researchers have published results showing that activation of microglia in the mouse spinal cord is responsible for increased pain sensitivity in response to stress.

READ MORE

A (Lab)Step Towards Reproducible Science

Article

The reproducibility crisis is holding back science. London-based Labstep, a start-up out of Oxford University, think that their tool can help make science more open and reproducible. That claim has now been given some concrete evidence with the announcement that the research contingent of the MRC Unit The Gambia at LSHTM will be trialling Labstep across their Banjul-based facility.

READ MORE

Related Content