We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Pharmacological properties of AC-3933, a novel benzodiazepine receptor partial inverse agonist

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

T. Hashimoto, T. Kiyoshi, H. Kohayakawa, Y. Iwamura, N. Yoshida
Neuroscience
October 2013

Abstract: We investigated in this study the pharmacological properties of AC-3933 [5-(3-methoxyphenyl)-3-(5-methyl-1, 2, 4-oxadiazol-3-yl)-1, 6-naphthyridin-2(1H)-one], a novel benzodiazepine receptor (BzR) partial inverse agonist. AC-3933 potently inhibited [3H]-flumazenil binding to rat whole brain membrane with a Ki value of 5.15 ± 0.39 nM and a γ-aminobutyric acid (GABA) ratio of 0.84 ± 0.03. AC-3933 exhibited almost no affinity for the other receptors, transporters and ion channels used in this study. In addition, AC-3933, in the presence of GABA (1 μM), gradually but significantly increased [35S] tert-butylbicyclophosphorothionate ([35S]-TBPS) binding to rat cortical membrane to 117.1% of the control (maximum increase ratio) at 3000 nM. However, this increase reached a plateau at 30 nM with hardly any change at concentration range of 100 nM to 3000 nM (from 115.2% to 117.1%). AC-3933 (0.1-10 μM) significantly enhanced KCl-evoked acetylcholine (ACh) release from rat hippocampal slices in a concentration dependent manner. Moreover, in vivo brain microdialysis showed that intragastric administration of AC-3933 at the dose of 10 mg/kg significantly increased extracellular ACh level in the hippocampus of freely moving rats (AUC0-2 h of ACh level; 288.3% of baseline). These results indicate that AC-3933, a potent and selective BzR inverse agonist with low intrinsic activity, might be useful in the treatment of cognitive disorders associated with degeneration of the cholinergic system.


http://dx.doi.org/10.1016/j.neuroscience.2013.10.031