We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


How gut microbes change after spinal cord injury

Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The community of bacteria that live in our intestines, also called the gut microbiome, is important to normal intestinal function. Knowing that spinal cord injuries often negatively affect the gut's ability to do its job, researchers at The Ohio State University Wexner Medical Center showed that spinal cord injury causes profound changes in the gut microbiota. They also showed that feeding mice probiotics after a spinal cord injury confers neuroprotection and improves functional recovery.

See Also: Finnish study establishes connection between gut microbiota and Parkinson's disease

The findings are published in the Journal of Experimental Medicine.

"The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of human development and physiology. Spinal cord injuries cause dramatic shifts in the types of bacteria normally found in the gut, resulting in dysbiosis, which can cause or contribute to neurologic disease," said principal investigator Philip Popovich, professor of neuroscience and director of The Center for Brain and Spinal Cord Repair at Ohio State's Neurological Institute.  

Whether dysbiosis affects recovery after spinal cord injury has not been determined, but Popovich's research team showed that:

  • Traumatic spinal cord injury causes bacterial translocation (movement of bacteria from gut into sterile tissues throughout the body) and dysbiosis. These changes are associated with activation of immune cells in gut-associated lymph tissue (GALT).
  • Experimental induction of dysbiosis before spinal cord injury impairs functional recovery and exacerbates spinal cord pathology. Importantly, antibiotics used to induce dysbiosis are used often in spinal cord injury clinics to treat pneumonia (gentamycin), wound infections (streptomycin) or cystitis (ciprofloxacin).
  • Conversely, commercially available probiotics, when given after spinal cord injury, protect the microbiome and confer neuroprotection, improve neurological recovery and elicit a protective immune response in GALT.

"Although paralysis and loss of neurologic function are well-known consequences of spinal cord injury, the current data reveal a previously unappreciated role for spinal cord injury in changing the gut microbiome with reciprocal effects on the magnitude of functional recovery and spinal cord neuropathology," said first author Kristina Kigerl of Ohio State.

Learn More: Healthy intestinal flora keeps the mind sharp—with some help from the immune system

These data will help shape future pre-clinical and clinical research programs focused on understanding the importance of the gut-immune-central nervous system axis in recovery from spinal cord injury, Popovich said.

Note: Material may have been edited for length and content. For further information, please contact the cited source.

The Ohio State University Wexner Medical Center   press release


Kigerl KA et al. Gut dysbiosis impairs recovery after spinal cord injury.   Journal of Experimental Medicine, Published October 17 2016. doi: 10.1084/jem.20151345