We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Learning While we Sleep?

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Hypnopedia, or the ability to learn during sleep, was popularized in the '60s, with for example the dystopia Brave New World by Aldous Huxley, in which individuals are conditioned to their future tasks during sleep. This concept has been progressively abandoned due to a lack of reliable scientific evidence supporting in-sleep learning abilities.

Recently however, few studies showed that the acquisition of elementary associations such as stimulus-reflex response is possible during sleep, both in humans and in animals.

Nevertheless, it is not clear if sleep allows for more sophisticated forms of learning. A study published this August 6 in the journal Scientific Reports by researchers from the ULB Neuroscience Institute (UNI) shows that while our brain is able to continue perceiving sounds during sleep like at wake, the ability to group these sounds according to their organization in a sequence is only present at wakefulness, and completely disappears during sleep.

Juliane Farthouat, while a Research Fellow of the FNRS under the direction of Philippe Peigneux, professor at the Faculty of Psychological Science and Education at Université libre de Bruxelles, ULB, used magnetoencephalography (MEG) to record the cerebral activity mirroring the statistical learning of series of sounds, both during slow wave sleep (a part of sleep during which brain activity is highly synchronized) and during wakefulness.


During sleep, participants were exposed to fast flows of pure sounds, either randomly organized or structured in such a way that the auditory stream could be statistically grouped into sets of 3 elements.

During sleep, brain MEG responses demonstrated preserved detection of isolated sounds, but no response reflecting statistical clustering.

During wakefulness, however, all participants presented brain MEG responses reflecting the grouping of sounds into sets of 3 elements.

The results of this study suggest intrinsic limitations in de novo learning during slow wave sleep, that might confine the sleeping brain's learning capabilities to simple, elementary associations.

This article has been republished from materials provided by Université libre de Bruxelles. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:

Farthouat Juliane, Atas Anne, Wens Vincent, De Tiège Xavier & Peigneux Philippe (2018) Lack of frequency-tagged magnetic responses suggests statistical regularities remain undetected during NREM sleep. Scientific Reports. DOI: 10.1038/s41598-018-30105-5