We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Nanoparticles Help Untangle Alzheimer’s Disease Plaques

Nanoparticles Help Untangle Alzheimer’s Disease Plaques content piece image
The amyloid beta protein that tangles to form the hallmark Alzheimer's brain plaques, cling to ultra-small "bowls," called nanobowls, scientists find. They can use these nanobowls to remove the toxic amyloid aggregates and further study them. Credit: Vrinda Sant

Want a FREE PDF version of this news story?

Complete the form below and we will email you a PDF version of "Nanoparticles Help Untangle Alzheimer’s Disease Plaques"

Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.
Read time:

Scientists are still a long way from being able to treat Alzheimer's Disease, in part because the protein aggregates that can become brain plaques, a hallmark of the disease, are hard to study. The plaques are caused by the amyloid beta protein, which gets misshapen and tangled in the brain. To study these protein aggregates in tissue samples, researchers often have to use techniques that can further disrupt them, making it difficult to figure out what's going on. But new research by Vrinda Sant, a graduate student, and Madhura Som, a recent PhD graduate, in the lab of Ratnesh Lal at the University of California, San Diego, provides a new technique for studying amyloid beta and could be useful in future Alzheimer's treatments.

Scientists have been studying the possibility of using nanoparticles, ultra-small structures that can be coated in therapeutics, to provide targeted treatments for a number of diseases. There are several potential applications for nanoparticles, such as coating them with chemotherapy agents and targeting them to a tumor for cancer treatment without toxic side effects for the rest of the body. Sant began researching bowl-shaped nanoparticles, which she calls "nanobowls," as a potential way to deliver treatments for Alzheimer's Disease.

Sant expected to have to coat the nanobowls in some kind of pharmaceutical in order to have them alleviate the amyloid beta protein plaques that contribute to Alzheimer's. But the amyloid beta proteins clung to the nanobowls even when they were just coated in a lipid-polymer without pharmaceuticals added, allowing the scientists to remove the toxic protein aggregates from the cells. "We were surprised to find that the nanobowls were therapeutic themselves," Sant says.

Sant says while using nanobowls as therapeutics for Alzheimer's Disease can be a potential application, it currently serves scientists who want to better understand the amyloid beta aggregates. In their recent research, Sant and team found that multiple forms of amyloid beta aggregates co-exist and not all forms directly convert into amyloid plaques, confirming what had been a hypothesis in the field. The research team is now working on using nanobowls to extract and further study amyloid beta protein aggregates. With amyloid beta being implicated in neurodegenerative diseases, cancer and cardiovascular conditions, nanobowls have potential for a range of diagnostics and treatments.

Reference: Sant V, Som M, Lal R. Mechanism for scavenging of amyloid-Β by hybrid silica nanobowls: diagnostic and therapeutic applications for AΒ pathology. Biophys. J. 2021;120(3):286a. doi: 10.1016/j.bpj.2020.11.1830

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.