We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Neuroinflammatory Cell Atlas Could Aid Multiple Sclerosis Therapies

Neuroinflammatory Cell Atlas Could Aid Multiple Sclerosis Therapies content piece image
Immune fluorescence of inflammatory microglia (depected in red) and blood-derived invading blood monocytes (shown in green). Credit: MJC Jordao/ University of Freiburg - Medical Center
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

A team of researchers under the direction of the Medical Center - University of Freiburg has succeeded in demonstrating in an animal model that previously unknown types of immune cells are present in the inflamed brain in the course of multiple sclerosis (MS). The discovery was made by means of a new, high-resolution method for analyzing single cells. The method allowed the researchers from Freiburg and Munich to create an immune cell atlas for the brain. They also showed how these cells promote the development of the autoimmune disease MS. The researchers report on their study in the January issue of the renowned journal Science, published on 25 January 2019.


"Our findings constitute a breakthrough for the understanding of autoimmune diseases like multiple sclerosis. We hope that it will now be possible to develop new, more cell-specific therapeutic approaches that are less prone to side-effects for treating inflammatory diseases like MS," says project director Prof. Dr. Marco Prinz, medical director of the Institute of Neuropathology at the Medical Center - University of Freiburg. "The main problem with the previous, inadequate therapy was that it inhibited the entire immune system. However, we succeeded in finding new subtypes of cells that are specific for local inflammation and destruction in MS. They might therefore be selectively inactivated," says Prof. Prinz.


Women Suffer More Often from Multiple Sclerosis

Multiple Sclerosis is one of the most common inflammatory diseases of the central nervous system (CNS), which includes the brain and spinal cord. The disease develops in women more often than in men and typically first manifests between the ages of 20 and 40. In Germany, around 120,000 people suffer from MS. "It is assumed that MS is an autoimmune disease in which immune cells mistakenly attack structures of the central nervous system and cause the inflammation," explains Prof. Prinz, who is also involved in the Signalling Research Excellence Clusters BIOSS and CIBSS of the Albert-Ludwigs-Universitaet Freiburg. The fact that phagocytes from the blood and the brain play a role in MS has already long been known, but it was unclear up to now precisely which subtypes are involved. After years of research work, the scientists have now identified these subtypes in an animal model of multiple sclerosis.


A New Immune Cell Atlas

Using the latest high-resolution single-cell methods, the researchers succeeded in mapping the complex composition of cells located at the focus of inflammation, the so-called inflammation infiltrate. This enabled them to create a new immune cell atlas.


The single-cell analyses used by the researchers are new and can be used in medicine for studying individual cells from tissues. The researchers see them as having enormous potential. "These methods allow us to paint an entirely new cellular picture of very complex tissues like the brain," says Dr. Dominic Gruen, one of the pioneers of this technique and research group leader at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg, which participated in the study.


The first author of the study, Marta Joana Costa Jordao, doctoral candidate at the Institute of Neuropathology of the Medical Center - University of Freiburg, also managed to demonstrate that different phagocytes in the brain remain chronically activated in the course of the disease. It was previously assumed that they were quickly renewed by circulating blood cells. "This permanent activation of the immune cells could explain why the brain of an MS patient is chronically attacked over the course of years," says Costa Jordao.

This article has been republished from materials provided by the University of Freiburg. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference: Jordão, M. J. C., Sankowski, R., Brendecke, S. M., Sagar, Locatelli, G., Tai, Y.-H., … Prinz, M. (2019). Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 363(6425), eaat7554. https://doi.org/10.1126/science.aat7554