We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Newly discovered infectious prion structure shines light on mad cow disease

Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Breakthrough electron cryomicroscopy technology used in prion research -

Groundbreaking research from the University of Alberta has identified the structure of the infectious prion protein, the cause of "mad cow disease" or bovine spongiform encephalopathy (BSE), chronic wasting disease in deer and elk and Creutzfeldt-Jakob disease in humans, which has long remained a mystery.

See Also: New test detects toxic prions in blood

The infectious prion protein is a misfolded protein, which makes it very difficult to purify and study. Since it clumps together, standard structural biology techniques cannot be used to study it. Since the protein was first purified in the 1980s researchers have made limited insights into the structure of the protein.

The collaborative study, published in PLoS Pathogens, used electron cryomicroscopy to collect high-resolution electron micrographs. This was the first time this technology has been used on amyloid fibrils of the infectious prion, which are a special form of clumped-together proteins that form fibrils.

"The recent advances to electron cryomicroscopy technology are certainly a breakthrough," says Holger Wille, co-principal investigator and an associate professor in the Department of Biochemistry at the University of Alberta's Faculty of Medicine & Dentistry. "We know the structure of the healthy normal cellular form of the protein, but we knew very little about the infectious prion protein and how it propagates. The use of these high-powered microscopes has finally given us some clarity."

The team had to develop a processing scheme for the data masses. There were thousands of electron micrographs, and they had to extract the best images. After three years of working, developing techniques and processing data the results in the paper are a three-dimensional model for the structure of the infectious prion protein.

"It is not an atomistic model, so we cannot say which position the atoms are in," says Wille. "But this is something we hope to do in the future."

The model can give insights into how the infectious prion protein propagates. The structure argues against existing theories of prion conversion and suggests how the process might actually work. The study suggests how infectious prions replicate by converting non-infectious, cellular versions into copies of themselves.

Read Next: Solving the next step in the mystery of prions

Moving forward, the researchers want to go into more depth. This study used model system prions, but they are now using the prions that infect cows (BSE), wild animals (chronic wasting disease) and humans (Creutzfeldt-Jakob disease).

"Ultimately, if we know how the prion propagates, we could come up with clinical interventions to treat or prevent disease," says Wille.

Note: Material may have been edited for length and content. For further information, please contact the cited source.

University of Alberta Faculty of Medicine & Dentistry   Original reporting by: Shelby Soke


Vázquez-Fernández E et al. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.   PLoS Pathogens, Published September 8 2016. doi: 10.1371/journal.ppat.1005835