We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
'Princess Leia' brainwaves help sleeping brain store memories
News

'Princess Leia' brainwaves help sleeping brain store memories

'Princess Leia' brainwaves help sleeping brain store memories
News

'Princess Leia' brainwaves help sleeping brain store memories

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "'Princess Leia' brainwaves help sleeping brain store memories "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Every night while you sleep, electrical waves of brain activity circle around each side of your brain, tracing a pattern that, were it on the surface of your head, might look like the twin hair buns of Star Wars' Princess Leia. The Salk Institute scientists who discovered these circular "Princess Leia" oscillations, which are described in the journal eLife think the waves are responsible each night for forming associations between different aspects of a day's memories.


See Also: No dream: Electric brain stimulation during sleep can boost memory


"The scale and speed of Princess Leia waves in the cortex is unprecedented, a discovery that advances the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative," says Terrence Sejnowski, head of Salk's Computational Neurobiology Laboratory.


Short-term memory of events is stored in the brain's hippocampus. Long-term memories, however, are encoded in the neocortex. The transfer of memories from the hippocampus to the neocortex is called memory consolidation, and happens while we sleep.


Sleep spindles—a type of brain wave pattern known to occur in the earliest stages of non-REM sleep—are associated with memory consolidation. Previous studies showed that the more sleep spindles a human brain exhibits overnight, the more numbers one would remember the next day. But exactly how these sleep spindles related to memory was unclear, and scientists were limited by the fact that electrodes could only detect these spindles at one place in the brain at a time.



"Princess Leia" brainwaves—dubbed so for their twin hair bun-like shape—are tied to memory and sleep. Researchers at the Salk Institute found that electrical activity forms into rotating waves during these oscillations. This video illustrates five oscillation cycles during which potential measured from the surface of the cortex exhibits stereotyped rotating patterns. Credit: Salk Institute


Learn More: Infants create new knowledge while sleeping


"For a long time, neuroscience researchers had to record activity at one point in the brain at a time and put many data points together without seeing the whole picture simultaneously," says Lyle Muller, a Salk research associate and first author of the new work. Scientists had long believed that each sleep spindle oscillation peaked at the same time everywhere in the neocortex of the brain.


Sejnowski and Muller wanted to see the broader picture, however, and turned to large-scale recordings, called intracranial electrocorticograms (ECoGs), that can measure activity in many areas of the brain at once. Patients with epilepsy often have ECoG arrays temporarily implanted in their brains to determine the location in the brain of epileptic seizures, so the scientists were able to study all the data collected from five such patients on healthy, seizure-free nights.


When they crunched the ECoG data from each night, the researchers were in for a surprise: the sleep spindles weren't peaking simultaneously everywhere in the cortex. Instead, the oscillations were sweeping in circular patterns around and around the neocortex, peaking in one area, and then—a few milliseconds later—an adjacent area.


"We think that this brain activity organization is letting neurons talk to neurons in other areas," says Muller. "The time scale that these waves travel at is the same speed it takes for neurons to communicate with each other."


Throughout the night, the researchers observed the same rotating patterns, each lasting about 70 milliseconds but repeating hundreds and hundreds of times over a matter of hours.


Don't Miss: Power naps produce a significant improvement in memory performance


Why would different areas of the neocortex need to communicate to store memories? One single memory is composed of different components (smell, sound, visuals) that are stored in different areas of the cortex. As a memory is being consolidated, Muller and Sejnowski hypothesize, circular sleep spindle waves help form the links between these different aspects of a single memory.


"If we understand how memories are being linked up like this in the brain, we could potentially come up with methods for disrupting memories after trauma," says Sejnowski. "There are also disorders including schizophrenia that affect sleep spindles, so this is really an interesting topic to keep studying."


Note: Material may have been edited for length and content. For further information, please contact the cited source.


Salk Institute   press release


Publication

Muller L et al. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night.   eLife, Published November 15 2016. doi: 10.7554/eLife.17267


Advertisement