We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Production of a molecule for memory of salt concentration

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Insulin receptor in a single neuron directs behavior of worms -


Researchers at the University of Tokyo have demonstrated that production of a specific type of insulin receptor is required for gustatory memory during starvation in worms. The finding provides evidence that learning ability is influenced by functional diversity of a single gene in a single neuron.


See Also: NIH-funded study reveals how differences in male and female brains emerge in C. elegans


C. elegans, a tiny roundworm that lives in soil, can remember concentrations of salts (NaCl etc.) to which it has been exposed during feeding or food deprivation and learn to approach or avoid those salt concentrations. The research group previously found that an insulin receptor, which is known to regulate blood glucose levels in humans, acts in a gustatory neuron that senses external salt concentrations in this learned behavior.


While the insulin receptor is encoded by a single gene in C. elegans, multiple types of insulin receptor are produced by switching RNA processing patterns. It was reported that a specific type of the insulin receptors, called DAF-2c, is required for the learned behavior in C. elegans. However, the detailed mechanism and the cell type that produces DAF-2c remained unclear.


Here, the research group of Assistant Professor Masahiro Tomioka and Professor Yuichi Iino at the University of Tokyo Graduate School of Science found that DAF-2c was produced only in a restricted subset of neurons, including the gustatory neuron. C. elegans has a compact nervous system, which consists of only 302 neurons, and the individual neurons play indispensable roles in behavioral and physiological functions. The research group unveiled the molecular mechanism by which the RNA processing pattern was switched and, as a result, DAF-2c was produced only in the restricted group of neurons. They further demonstrated that this mechanism underlies the learned salt avoidance under starvation conditions.


Don't Miss: When flying, your taste buds prefer savory tomato


“Our study unveiled a gene expression mechanism that generates neuronal properties underlying learning and memory in worms,” says Tomioka. “Similar mechanisms may underlie generation of neuronal properties required for learning and memory in higher organisms including mammals and offer future avenues for research.”


Note: Material may have been edited for length and content. For further information, please contact the cited source.


University of Tokyo   press release


Publication

Tomioka M et al. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor.   Nature Communications, Published May 20 2016. doi: 10.1038/ncomms11645