We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Protective effect of genetically modified cord blood on spinal cord injury in rats
News

Protective effect of genetically modified cord blood on spinal cord injury in rats

Protective effect of genetically modified cord blood on spinal cord injury in rats
News

Protective effect of genetically modified cord blood on spinal cord injury in rats

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Protective effect of genetically modified cord blood on spinal cord injury in rats "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Transplantation of genetically modified cells carrying a transgene has a greater stimulating effect on the regeneration of post-traumatic central nervous system.


During spinal cord injury, the extensive area adjacent to the epicenter of the injury gets involved in the pathological process. So in order to achieve complete therapeutic action, the therapeutic gene must be delivered not only to the epicenter of traumatic injury but also to the surrounding areas distant from the epicenter of injury.


See Also: Do spinal cord injuries cause subsequent brain damage?


Two transgenes, vascular endothelial growth factor (VEGF) and glial cell-derived neurotrophic factor (GDNF), proved to be powerful factors in the maintenance of viability of a number of different cell populations in the spinal cord, including motor neurons.


VEGF stimulates neurogenesis and axonal growth as well as the rapid reproduction of astrocytes, neural stem, and Schwann cells. GDNF reduces apoptosis and tissue degeneration, supports expression of neurofilament protein, calcitonin gene-related peptide (CGRP) and growth associated protein 43.


For this study, researchers from Kazan Federal University and Kazan State Medical University chose human umbilical cord blood mononuclear cells (UCB-MCs) (easy to produce and safe, with low immunogenicity and the potential to increase neuroregeneration) transduced with the two genes VEGF and GDNF.


"Considering the action of VEGF and GDNF through different receptors and pathways, we hypothesized that the simultaneous delivery of these two therapeutic genes would promote synergistic neuroprotective effects.


Thus, using a rat contusion spinal cord injury model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo" comments one of the authors Yana Mukhamedshina.


Related: New discovery gives hope that nerves could be repaired after spinal cord injury


The results obtained show that the adenoviral vectors encoding VEGF and GDNF, used to transduce UCB-MCs, were shown to be an effective and stable in these cells following transplantation.


The construct managed to increase tissue sparing and numbers of spared/regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury. Researchers conclude that genetically modified human umbilical cord blood cells are a promising strategy for enhancing posttraumatic spinal cord regeneration.


Note: Material may have been edited for length and content. For further information, please contact the cited source.

Kazan Federal University


Publication

Mukhamedshina YO et al. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion.   PLoS One, Published March 22 2016. doi: 10.1371/journal.pone.0151745


Advertisement