We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Study Points to Possible Treatment for Brain Disorders


Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Study Points to Possible Treatment for Brain Disorders"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:
 

Clemson University scientists are working to determine how neurons are generated, which is vital to providing treatment for neurological disorders like Tuberous Sclerosis Complex (TSC).


TSC is a rare genetic disease that causes the growth of tumors in the brain and other vital organs and may indicate such disorders as autism, epilepsy and cognitive impairment that may arise from the abnormal generation of neurons.


“Current medicine is directed at inhibiting the mammalian target of rapamycin (mTOR), a common feature within these tumors that have abnormally high activity,” said David M. Feliciano, assistant professor of biological sciences. “However, current treatments have severe side effects, likely due to mTOR’s many functions and playing an important role in cell survival, growth and migration.”


Feliciano and colleagues published their findings in journal Cell Reports.


“Neural stem cells generate the primary communicating cells of the brain called neurons through the process of neurogenesis, yet how this is orchestrated is unknown,” said Feliciano.


The stem cells lie at the core of brain development and repair, and alterations in the cells’ self-renewal and differentiation can have major consequences for brain function at any stage of life, according to researchers.


To better understand the process of neurogenesis, the researchers used a genetic approach known as neonatal electroporation to deliver pieces of DNA into neural stem cells in young mice, which allowed them to express and control specific components of the mTOR pathway.


The researchers found that when they increase activity of the mTOR pathway, neural stem cells make neurons at the expense of making more stem cells. They also found that this phenomenon is linked to a specific mTOR target known as 4E-BP2, which regulates the production of proteins.


Ultimately, this study points to a possible new treatment, 4E-BP2, for neurodevelopmental disorders like TSC and may have fewer side effects.


Future experiments are aimed at identifying which proteins are synthesized due to this pathway in neurological disorders.


Note: Material may have been edited for length and content. For further information, please contact the cited source.

Clemson University press release


Publication

N.W. Hartman, T.V. Lin, L. Zhang, G.E. Paquelet, D.M. Feliciano, and A. Bordey. mTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal In Vivo. Cell Reports, Published October 17 2013. doi: 10.1016/j.celrep.2013.09.017


Advertisement