We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Target healthy cells to stop brain cancer “hijack”: study
News

Target healthy cells to stop brain cancer “hijack”: study

Target healthy cells to stop brain cancer “hijack”: study
News

Target healthy cells to stop brain cancer “hijack”: study

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Target healthy cells to stop brain cancer “hijack”: study"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

New University of British Columbia (UBC) research into brain cancer suggests treatments should target the cells around a tumor to stop it from spreading.


UBC research team Christian Naus, Wun Chey Sin and John Bechberger study glioma, the most aggressive form of adult brain cancer. Glioma has a median survival of about 15 months and a two-year survival rate of 30 per cent because it is difficult to completely remove cancer cells without compromising brain functions and chemotherapy and radiotherapy do not prevent the regrowth of remaining cancer cells.


With this new research, the team reveals an alternative route to rein in the glioma cancer cells. The cancerous cells mingle with astrocytes, a type of cell that regulates the environment in the brain to create favorable conditions for brain functions. The research team found that glioma cells can reprogram the astrocytes with little pieces of genetic code (microRNAs). Those codes act as master switches, turning specific sets of genes on and off.


“This is the first evidence that microRNA can go from glioma cells into astrocytes and reprogram them to provide an altered environment that stimulates tumor growth and invasion,” said Naus, a professor in the Department of Cellular & Physiological Sciences in the Life Sciences Institute and an investigator with the Djavad Mowafaghian Centre for Brain Health.


researchers

Research team: Christian Naus, Wun Chey Sin and John Bechberger. Credit: UBC

“We should consider the possibility of creating a treatment that would temporarily modify the healthy astrocytes around the tumor so the cancer cells can’t hijack them,” said Sin, a research associate leading the glioma investigation in the Naus laboratory.


The findings were recently published in three related papers in the journals Oncogene and Oncotarget.


The research was also highlighted in a recent interdisciplinary project, “Fashioning Cancer: A Correlation Between Destruction and Beauty,” where images of brain cancer were used to highlight public awareness, as well as raise funds for cancer research.


Note: Material may have been edited for length and content. For further information, please contact the cited source.

University of British Columbia   press release


Publications

Naus CC et al. Astrocytes promote glioma invasion via the gap junction protein connexin43.   Oncogene, Published July 13 2015. doi: 10.1038/onc.2015.210


Naus CC et al. Gap junctions modulate glioma invasion by direct transfer of microRNA.   Oncotarget, Published June 20 2015.


Aftab Q, Sin WC, Naus CC. Reduction in gap junction intercellular communication promotes glioma migration.   Oncotarget, Published May 10 2015.


Advertisement