We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
UT Southwestern Researchers Identify Key Molecular Step to Fighting Off Viruses
News

UT Southwestern Researchers Identify Key Molecular Step to Fighting Off Viruses

UT Southwestern Researchers Identify Key Molecular Step to Fighting Off Viruses
News

UT Southwestern Researchers Identify Key Molecular Step to Fighting Off Viruses

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "UT Southwestern Researchers Identify Key Molecular Step to Fighting Off Viruses"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Researchers have determined how a protein that normally latches onto molecules inside cells and marks them for destruction also gives life to the body’s immune response against viruses.

UT Southwestern Medical Center researchers have determined how a protein that normally latches onto molecules inside cells and marks them for destruction also gives life to the body’s immune response against viruses.

The researchers discovered that a certain form of the “death” protein ubiquitin interacts with another protein, called RIG-I, but does not mark it for destruction. Instead, this form of ubiquitin binds to and activates RIG-I, which is known to trigger the body’s immune system when a virus invades a cell.

Dr. Zhijian “James” Chen, professor of molecular biology at UT Southwestern, is senior author of the study, which is available online and in the journal Cell.

Dr. Chen and his colleagues reconstituted key elements of the human innate immune system in laboratory test tubes and found ubiquitin forms a unique chain-like structure that associates with RIG-I before RIG-I can get to work fighting viruses. The innate immune system is the body’s first generic response against invading pathogens.

“Activation of RIG-I is the first line of our immune defenses against viral infections,” said Dr. Chen, an investigator for the Howard Hughes Medical Institute at UT Southwestern. “Understanding how it comes to life is a key step in developing new approaches to antiviral therapies. Having this test-tube system could help us identify substances that enhance the body’s antiviral immunity.”

Dr. Chen said his team’s experiments mark the first time innate immunity has been recapitulated in a test tube. The findings provide one of the missing pieces in the complex puzzle of how the body fights off infection, he added.

Dr. Chen is now focusing on how activated RIG-I interacts with another protein called MAVS, also essential for immune response.

Advertisement