This Week on NeuroScientistNews: 2 March – 6 March
Complete the form below to unlock access to ALL audio articles.
Neural code for learning and memory; image-guided treatment for migraines; genetic risk for MS, and more.
♦ Mind-readers: scientists crack a piece of the neural code for learning & memory
It sounds like the stuff of science fiction: researchers slice a brain into thin little sections and, just by measuring the properties of specific neurons, they can determine what an organism learned before it died. In fact, this sort of mind reading has become a reality. In work published in Nature, researchers describe how postmortem brain slices can be "read" to determine how a rat was trained to behave in response to specific sounds. The work provides one of the first examples of how specific changes in the activity of individual neurons encode particular acts of learning and memory in the brain.
♦ Time to “just say no” to behavior-calming drugs for Alzheimer's patients?
Doctors write millions of prescriptions a year for drugs to calm the behavior of people with Alzheimer's disease and other types of dementia. But non-drug approaches actually work better, and carry far fewer risks, experts conclude in a new report.
♦ Image-guided treatment shown to break the migraine cycle
An innovative interventional radiology treatment has been found to offer chronic migraine sufferers sustained relief of their headaches, according to research presented at the Society of Interventional Radiology's Annual Scientific Meeting. Clinicians used a treatment called image-guided, intranasal sphenopalatine ganglion (SPG) blocks to give patients enough ongoing relief that they required less medication to relieve migraine pain.
♦ Strong genetic risk factor for MS discovered in family of five affected siblings
Researchers have identified a genetic variation that in women significantly increases their risk of developing MS. The variant occurs almost twice as often among women with MS as in women without the disease, making it "one of the strongest genetic risk factors for MS discovered to date."
♦ New way several brain areas communicate identified
Neuroscientists have identified a new pathway by which several brain areas communicate within the brain's striatum. The findings illustrate structural and functional connections that allow the brain to use reinforcement learning to make spatial decisions, such as the dorsolateral prefrontal, orbitofrontal cortex, and posterior parietal cortex. Communication between these regions is important for abilities like how a baseball player is able to estimate where to swing his bat or how a person finds a car in a large parking lot filled with similar cars.