We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Why Aligning Biological Clock to the Day-Night Cycle Is So Important

Why Aligning Biological Clock to the Day-Night Cycle Is So Important content piece image
Credit: Golden Lab, UC San Diego
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Timing is everything. A fresh example supporting the old saying has been found in connection with the systems regulated by biological clocks.

Research on circadian rhythms, our internal 24-hour patterns that affect sleep-wake and metabolic cycles, has shown that timing is key for human health. When our activities and internal circadian clocks are out of step with the natural day-night cycle—for example, in cases of irregular shift work, jet lag and poor sleep-wake habits—we increase our risk of disease because of the mistiming of important biological processes. But the genetics behind these mechanisms haven’t been well established.                                                 

Now scientists at the University of California San Diego studying photosynthetic bacteria called cyanobacteria, or “blue-green algae,” have identified the roots of a behavior that is regulated by the circadian clock.

“I think this paper demonstrates the importance of having internal biological time coincide with environmental time,” said UC San Diego Distinguished Professor Susan Golden, director of the Center for Circadian Biology and senior author of the paper. “There are lots of human illnesses in which people are poorly aligned to their environment. This can result from habits such as getting too much light at night, eating at odd times of the day and not sleeping regularly. In the cyanobacterium it makes a very big difference for biological time and external environment time to be aligned.”

Scientists know that in the hunt for new genes, bacteria incorporate DNA from the environment. Such processes ensure that there is raw material to generate genetic variation, which is how species evolve. Yet the details of this puzzling process are understood in only a few organisms. The ability to take up DNA is typically tightly regulated, suggesting to scientists that it would be detrimental to the organism to indiscriminately take up foreign genes.

In the new study, the researchers identified the DNA uptake machinery in the cyanobacterium Synechococcus elongatus and discovered that the internal circadian clocks within their cells prevent DNA uptake early in the day and enhance the process early at night. They had predicted that clock-mediated expression of certain dusk-peaking, dark-induced genes is central for taking up DNA from the environment. They found that when darkness occurs at the time the cells’ internal clock tells them it’s dusk, DNA uptake and incorporation increase dramatically. In contrast, darkness at times that do not match the internal clock time fails to provide a boost in DNA uptake and incorporation.

As for why early DNA uptake is discouraged and late is enhanced, scientists aren’t quite sure. They are testing hypotheses such as whether it may be helpful to avoid taking up potentially dangerous DNA when viruses are more prevalent, which in some environments is during the day.

“This study provides a striking example of the importance of keeping the internal biological clock aligned with the external environment so that processes occur at the right time of day,” the researchers say.


Taton et al. (2020) The circadian clock and darkness control natural competence in cyanobacteria. Nature Communications. DOI: https://doi.org/10.1038/s41467-020-15384-9

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.