We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Bio-Rad Introduces First ProteOn™ Sensor Chip
Product News

Bio-Rad Introduces First ProteOn™ Sensor Chip

Bio-Rad Introduces First ProteOn™ Sensor Chip
Product News

Bio-Rad Introduces First ProteOn™ Sensor Chip


Want a FREE PDF version of This Product News?

Complete the form below and we will email you a PDF version of "Bio-Rad Introduces First ProteOn™ Sensor Chip"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Drug Discovery Researchers Get Powerful Tool for Screening Membrane Targets.

Bio-Rad Laboratories, Inc. announced the launch of two surface plasmon resonance (SPR) kits that, when used with the ProteOn XPR36 protein interaction analysis system, enable for the first time the accurate analysis of lipids and membrane proteins with peptides and small molecules.

G-coupled protein receptors, 7-transmembrane receptors, and other integral membrane proteins constitute more than 40% of new drug targets. The new kits — the novel hydrophilic ProteOn LCP liposome capturing kit and the lipophilic ProteOn GLC lipid kit — stably and selectively capture lipids and lipid assemblies for easier screening and analysis of membrane protein targets during drug discovery.

ProteOn_LCP_Capturning_Reag.gif

ProteOn LCP Liposome Capturing Kit

The ProteOn LCP sensor employs memLayer technology to selectively and stably capture lipid assemblies. The “native-lipid like” environment of the chip surface where proteins are captured ensures high quality data.

"The memLayer approach offers an interesting alternative,” said Maria Pavlaki, a senior researcher at Democritus University of Thrace in Greece. “The proteins can be in a more native-like environment (lipoparticles or liposomes) that resembles the cell membrane and are not ‘squashed’ on the surface.”

Capable of capturing multiple layers of lipid assemblies, the ProteOn LCP liposome capturing kit SPR kit is the first to allow label-free detection for binding analysis of peptides and small molecules. And, it empowers researchers to gauge drug absorption by monitoring interactions at the lipid’s surface and tracking uptake of molecules into the assembly.

The ProteOn LCP capturing reagent kit, included in the ProteOn LCP liposome capturing kit, is used to activate the LCP sensor chip with a biotinylated DNA tag that then hybridizes to DNA-tagged lipid assemblies containing membrane proteins of interest.

The surface is easily regenerated with water and ready for re-use.

ProteOn GLC Lipid Kit

The ProteOn GLC lipid kit provides researchers with a basic, easy-to-use option to study interactions of membranes with proteins and peptides. Biopharmaceutical researchers use the kit to capture lipoparticles containing membrane protein drug targets of interest. Antibodies against those drug targets are then screened to measure binding kinetics, an important step in biotherapeutic development.

Researchers can customize the lipophilicity of the GLC sensor surface before capturing lipid assemblies (e.g. proteoliposomes and lipoparticles) by controlling the amount of alkylamine that is bound to the sensor surface. This provides greater experimental flexibility and, because the surface is stable and regenerable, researchers have greater confidence in the quality of data collected over the course of a screening protocol.

"I am very happy with the GLC lipid kit,” said Fang Yi, Ph.D., a scientist at Janssen Biotech “It’s rather straightforward, with very stable capture, high capacity, reproducibility, and also low non-specific binding. I would definitely like to use it for my future lipoparticle characterization studies.”

Advertisement