

Phenotypic Screening Applied to the Anti-biofilm Drug Discovery: Identification of Anti-biofilm Flavonoids from a Chemical Library

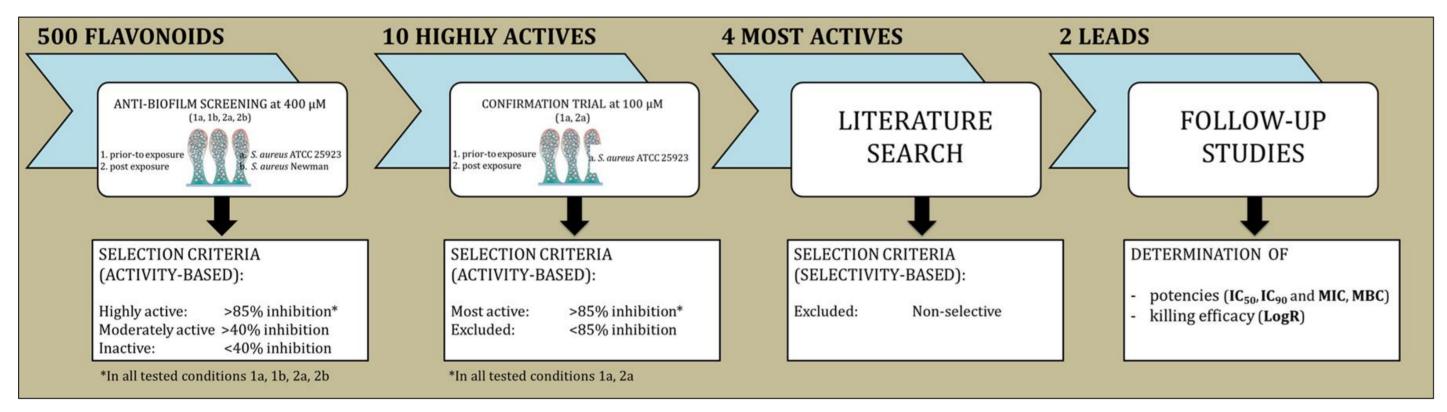
Suvi Manner¹*, Malena Skogman², Pia Vuorela², Adyary Fallarero²

¹ Pharmaceutical Sciences, Department of Biosciences, Åbo Akademi University, Finland
 ² Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland

* suvi.manner@abo.fi

Screening Europe 17-18 February 2015 Berlin, Germany

BACKGROUND AND OBJECTIVES


Biofilms, structured communities of bacteria embedded in a matrix of extracellular polymeric substances (EPS), are involved in 80% of all bacterial infections and responsible for majority of recalcitrant, antibiotic-resistant infections. However, there is only a very limited selection of compounds that can selectively act on existing biofilms and effectively eradicate them at low concentrations. Furthermore, no antibiotic and only one biocide have been accepted by a regulatory agency to be used specifically against biofilms. Hence, the need for new anti-biofilm compounds is immense [1, 2].

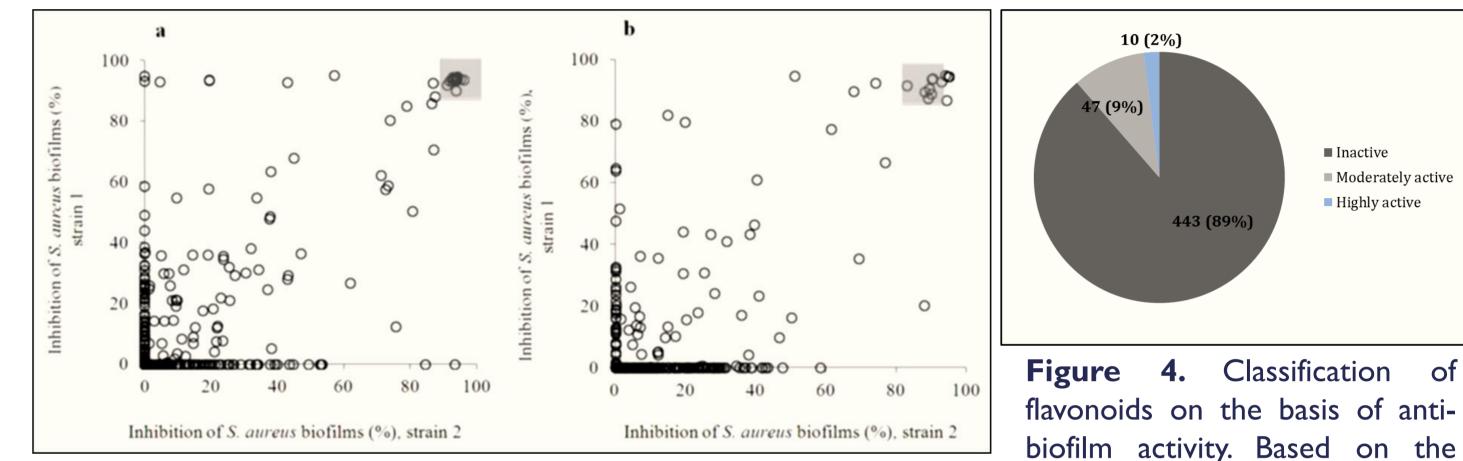
Flavonoids, plant secondary metabolites, are one of the most extensively studied classes of natural products with various biological activities. The antibacterial properties of flavonoids are widely reported while fewer studies focus on anti-biofilm activity. Moreover, the data from previously published studies is often conflicting due to differences in experimental conditions [3]. Therefore, the objective of this work was to systematically screen a commercial collection of 500 natural and synthetic flavonoids for inhibitory activity against *Staphylococcus aureus* biofilms. Additionally, an improved methodological workflow for anti-biofilm screens taking into account connections between anti-biofilm and antibacterial properties was developed and applied here.

EXPERIMENTAL SECTION

WORKFLOW AND SELECTION CRITERIA

Anti-biofilm activity of flavonoids collection was explored utilizing a two-phased phenotypic high throughput screening (HTS) platform, previously optimized for screening of natural compound libraries [4-6]. Thereafter, a selection process combining activity and selectivity was applied and two synthetic flavans were identified as the most promising flavonoids (leads) [7] (**Figure I**).

Figure I. Schematic representation of the anti-biofilm screening process and selection criteria applied to this work.


METHODS

Inhibitory activity based on biofilm viability and total biomass was determined

RESULTS

I. ANTI-BIOFILM SCREENING

On the basis of results obtained in the first screening (Figure 3), flavonoids were classified as inactive (443), moderately active (47) and highly active (10) (Figure 4). Results from the primary screening and reconfirmation trial of the highly active flavonoids are shown in Table 1.

Figure 3. Inhibitory activity (based on biofilm viability) of the entire collection when added prior-to (a) and post-biofilm formation (b) against two strains of *S. aureus*. Strains I and 2 refer to *S. aureus* ATCC 25923 and Newman, respectively. Highly active flavonoids are presented in both shadowed areas.

Figure 4. Classification of flavonoids on the basis of antibiofilm activity. Based on the amount of compounds identified as highly active, the calculated overall hit rate was 2%.

with resazurin staining and crystal violet staining assay, respectively (**a**, **b**). Literature search was performed using PubMed search engine and PubChem Bioassays (**c**). Anti-biofilm and antibacterial potencies (IC_{50} , IC_{90} and MBC values, respectively) were defined on the basis of resazurin assay (**a**), while MIC values were estimated by turbidity measurements (**d**). Killing efficacy was measured with LogR (reduction): difference of log10 density (CFU/ml) in control and treated wells utilizing plate count method (**e**).

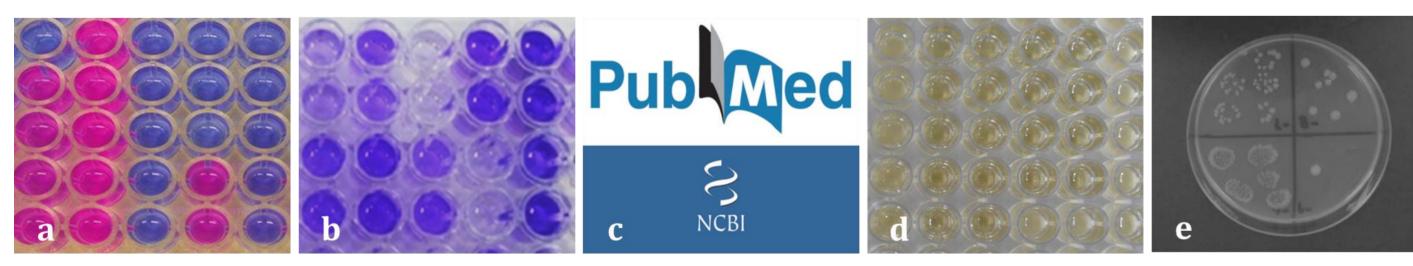


Figure 2. Methods used in this work. From left to right resazurin assay (a), crystal violet staining assay (b), literature search (c), turbidity measurements (d) and plate count method (e).

CONCLUSIONS

- This work provides a large amount of new bioactivity data of flavonoids and identifies several new flavonoids with anti-biofilm activity
- \checkmark Two synthetic flavans were identified and characterized as the most

	Company ID	Class	Inhibition of biofilm formation (%)					
Code			Primary screening at 400 µM			Reconfirmation trial at 100 µM		
			Prior-to-exposure		Post-exposure		Prior-to-exposure	Post-exposure
			strain 1	strain 2	strain 1	strain 2	strain	1
33	ST014848	isoflavone	93.8	93.8	94.5	94.9	19.7 ± 5.6	0
59	ST024709	flavanone	94.1	92.6	94.8	94.0	95.5 ± 0.1	92.5 ± 3.2
139	ST056204	flavanone	93.8	95.1	86.9	94.3	95.0 ± 0.1	93.6 ± 1.1
291	ST075672	flavan	93.2	92.6	94.6	94.7	95.4 ± 0.1	94.1 ± 1.2
369	ST081006	flavan	93.6	96.1	93.9	90.3	95.3 ± 0.2	93.3 ± 1.7
424	ST092293	chalcone	93.8	94.3	93.7	90.2	15.9 ± 5.1	0
432	ST093738	flavan	94.1	94.0	89.4	88.1	0	0
446	ST098360	flavanone	92.0	91.2	92.9	92.9	0	0
464	ST095411	chalcone	93.7	93.7	90.5	89.4	0	0
469	ST095417	chalcone	94.8	94.1	88.8	90.0	0	0

Table I. List of the highly active flavonoids selected based on the initial screening results and results from the reconfirmation test performed for further selection of the most potent leads. Strains I and 2 correspond to *S. aureus* ATCC 25923 and Newman, respectively. The most actives are located within the red box.

2. FOLLOW UP-STUDIES OF THE LEAD FLAVONOIDS

Upon the literature search two synthetic flavans (Figure 5) were identified as the most selective and follow-up inhibition and efficacy studies were conducted (Tables 2 & 3).

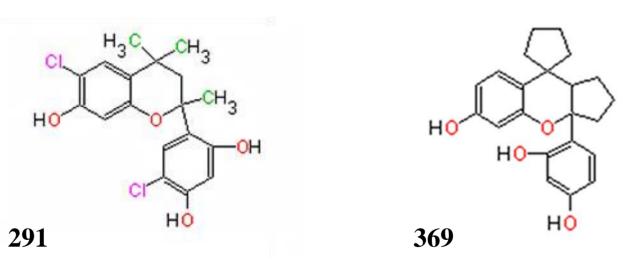


Figure 5. Structures of the selected lead compounds of flavan class.

Table 2. Anti-biofilm potencies and effects onsuspended bacteria of the lead compounds.

	Effects on biofi	lms	Effects on suspended		
	μM (μg/ml)		bacteria		
			μΜ (μ	ıg/ml)	
Compound					

Anti-biofilm and antibacterial potencies (**Table 2**) were defined. They indicate that both compounds prevent biofilm

potent antimicrobials combining anti-biofilm and antibacterial properties

 Because connections between antibacterial and anti-biofilm effects were taken into account, this work could serve as a model for future studies of natural compounds known to be antibacterial

REFERENCES

[1] Worthington RJ, et al. 2012 Org Biomol Chem, 10:7457-74.
[2] Donlan RM & Costerton JW. 2002 Clin Microbiol, 15:167-93.
[3] Cushnie TP & Lamb AJ. 2011 Int J Antimicrob Agents, 38:99-107.
[4] Sandberg M, et al. 2008 Int J Antimicrob Agents, 32:233-240.

[5] Sandberg ME, et al. 2009 J Microb Methods, 78:104-106.
[6] Skogman ME, et al. 2012 J Antibiot (Tokyo), 65:453-459.
[7] Manner S, et al. 2013 Int J Mol Sci, 14:19434-51.

ACKNOWLEDGEMENTS

Academy of Finland (decision number 282981), National Doctoral Programme in Informational and Structural Biology (ISB) and Finnish Pharmacists' Association are acknowledged for financial support.

	IC	-50	IC ₉₀	МІС	MDC
	Prior-to exposure	Post- exposure	Prior-to exposure	MIC	MBC
291	10.2 (3.8)	27.9 (10.3)	13 (4.6)	20 (7.4)	15 (5.5)
369	17.7 (6.2)	60.5 (21.3)	40 (14.1)	40 (14.1)	40 (14.1)

Table 3. Results from LogR assay.

Compound		Log Reduction	0	
	μΜ	(Biofilms)	(Planktonic)	
	20	0.6	0.1	
291	80	1.5	0.7	
291	200	3.5	3.5	
	400	4.6	4.7	
	50	1.5	1.2	
360	100	3.9	4.1	
369	250	3.1	9.0	
	400	3.9	9.0	

formation likely by killing planktonic bacteria. Additionally, both compounds can affect specific biofilm processes because they were found to be active also in post-exposure mode of assay.

Further, the killing efficacy was quantified in both lifestyles (**Table 3**). Compound **291** was confirmed to display equal antibacterial and anti-biofilm activity, whereas compound **369** was found to be more effective against bacteria in planktonic phase with lesser activity against biofilm bacteria.

www.abo.fi