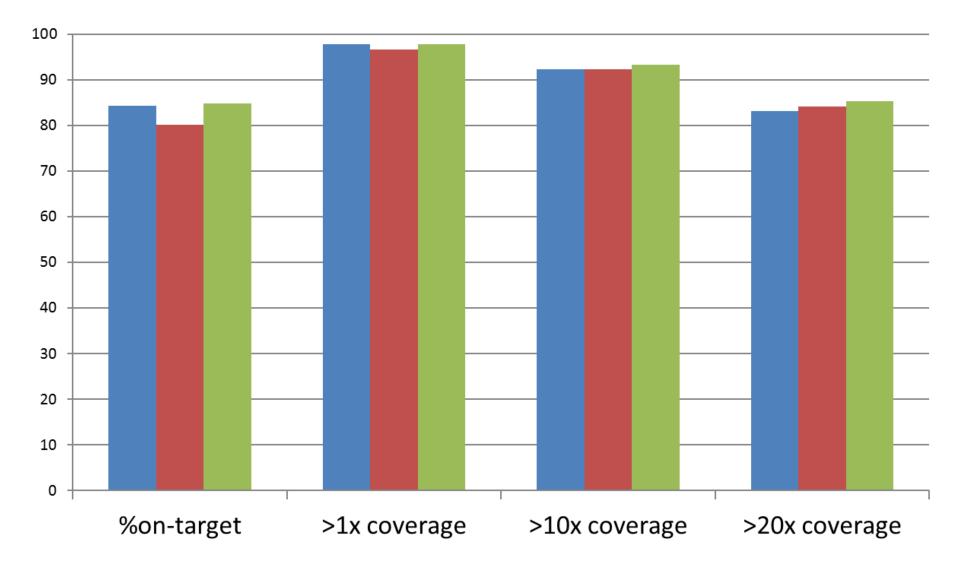
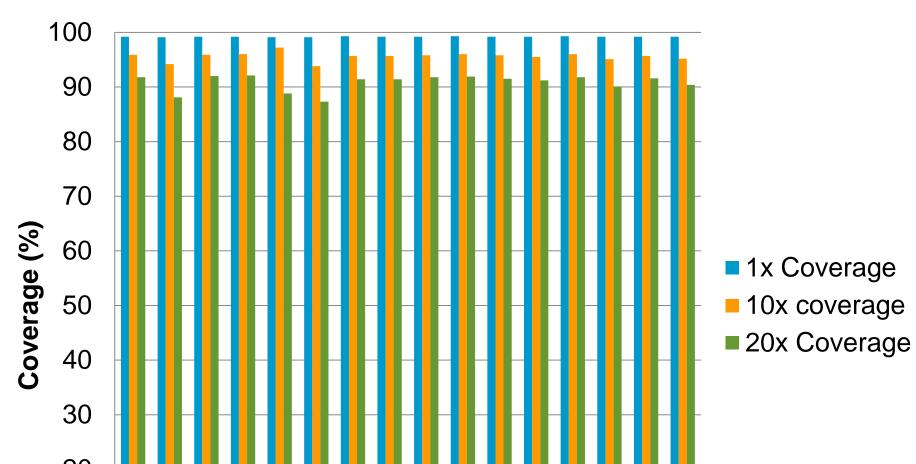
A complete workflow from sample preparation to analysis using SureSelect target enrichment system for lon Proton semiconductor sequencing

Christian Le Cocq¹, Kyeong Soo Jeong¹, Arjun Vadapalli ¹, Joseph Ong², Elin Agne³, Filip Karlsson³, Ashutosh Ashutosh¹, Francisco Useche¹, Jayati Ghosh¹, Henrik Johansson³, Scott Happe², Douglas Roberts¹, and Holly Hogrefe⁴ Agilent Technologies, Diagnostics and Genomics Group ¹Santa Clara, California 95051 ²Cedar Creek, Texas 78612 ³Uppsala, Sweden ⁴La Jolla, California 92037



Abstract


Whole exome or targeted sequencing for protein-coding regions has provided a cost effective way to identify common and rare polymorphisms that are associated with Mendelian disorders and complex diseases. With increased capacity of semiconductor sequencing, highly multiplexed samples can be studied in a single sequencing run. However, a complete workflow processing raw DNA samples to identify DNA variants in target regions is not easily accessible. Here we describe an analysis workflow to study multiplexed samples in semiconductor sequencing for several target sizes: 50Mb (Human All Exon), 3.2Mb (Human Kinome) and a 1Mb custom design. The workflow includes library preparation, SureSelect target enrichment, semiconductor sequencing, and variant calling with SureCall software (beta version). Improved and simplified steps for library preparation and target enrichment maximize multiplexing and produce consistent results in the Ion Proton sequencer. Sequencing output can be easily analyzed, visualized and summarized in a report with SureCall which is optimized for use with Agilent's target enrichment system. We demonstrate high capture efficiency, uniformity, and reproducibility of enrichment. The results from different capture sizes show comparable high performance regardless of various targeted regions. The combination of efficient target enrichment system, semiconductor sequencing, and SureCall software provides a fast and convenient tool to assess DNA variants in genomic regions of interest.

All Exon V5 Capture Performance

SureSelect with lon Proton shows excellent capture and uniformity.

Custom Capture Performance

Materials & Methods

SureSelect Target Enrichment Workflow Ligation Shearing / PCR /Nick Repair SPRI Size Selection Hybridization (16~24hr) Capture/ Sequencing PCR ize Selection Wash GENOMIC SAMPLI SureSelect **300000000000**000000 **Target Enrichment System** 20000000000000000000 **Capture Process** NGS Kit

Figure 1. Summary of typical capture performance. SureSelect was performed with Hapmap DNA (NA12878) and Exon V5 baits. The vertical axis shows the percentage of on-target or coverage. Each sample includes 4Gb of sequencing. Coverage shows the percentage of targeted bases with triplicates.

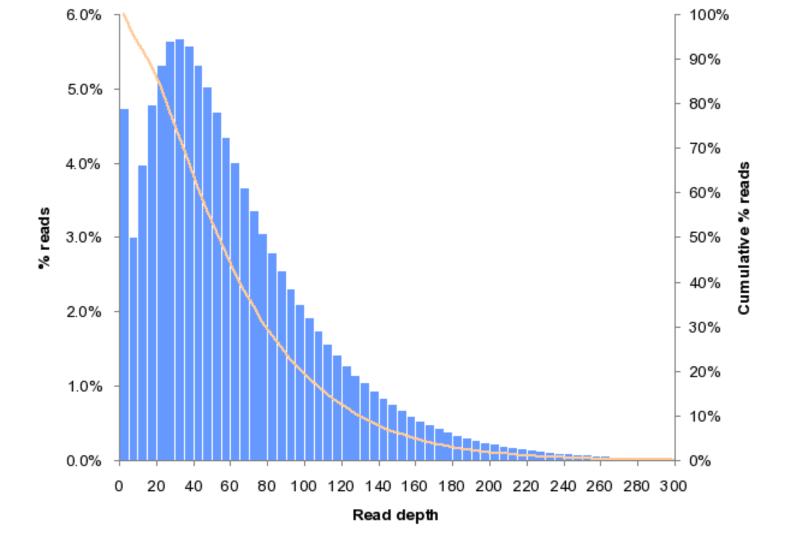


Figure 2. Read depth distribution. The uniquely mapped reads show a uniform read depth distribution. The cumulative percent of reads is shown by an orange line.

SNP concordance (All Exon V5)



Figure 4. Capture performance with SureSelect Custom baits (1 Mb). 16 Hapmap DNA (NA12878) samples were analyzed with multiplexing. The results are shown with 0.1 Gb of sequencing. The vertical axis shows the percentage of targeted bases with at least 1 (blue), 10 (orange) and 20 (green) reads.

SureCall results

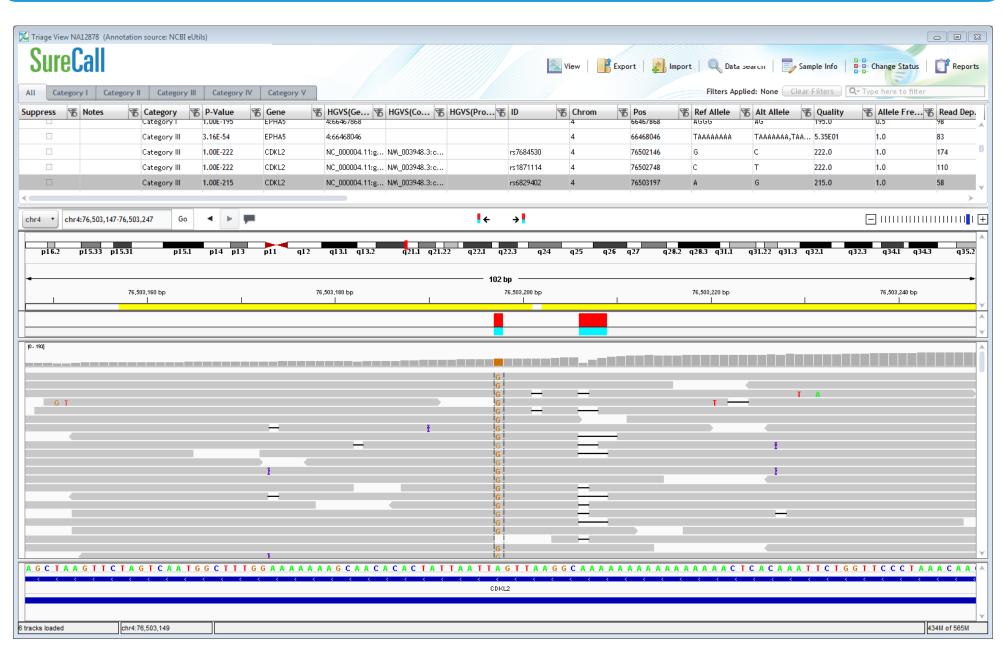
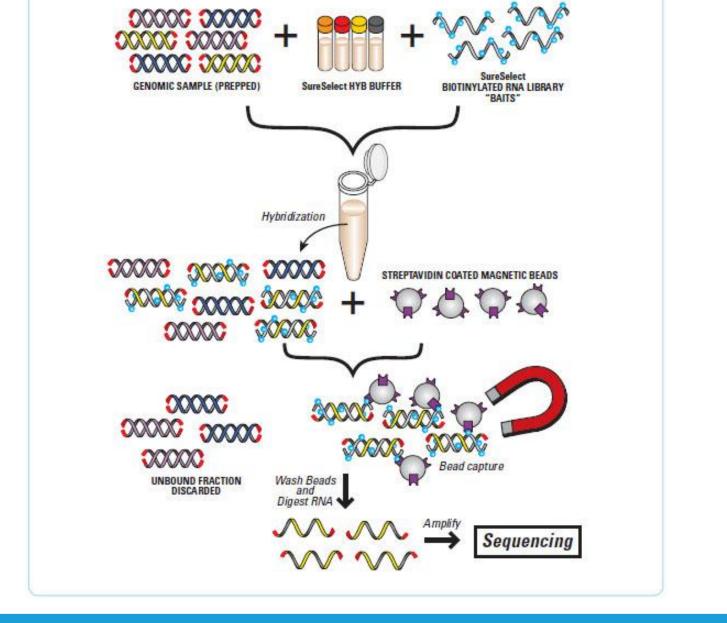
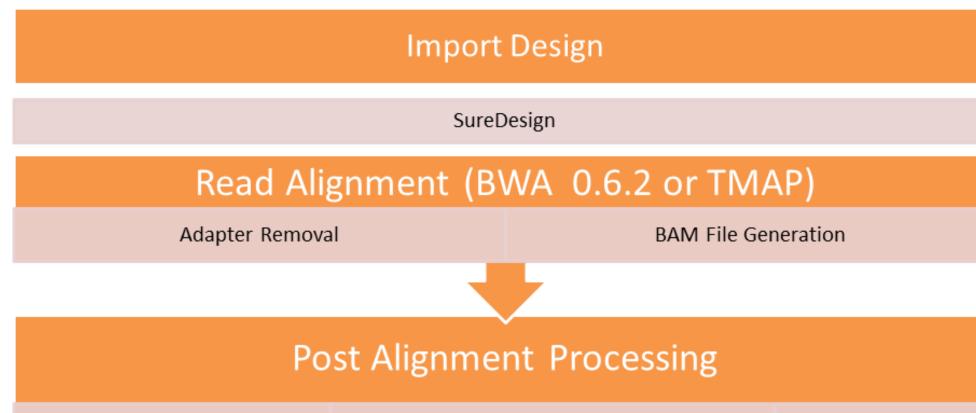
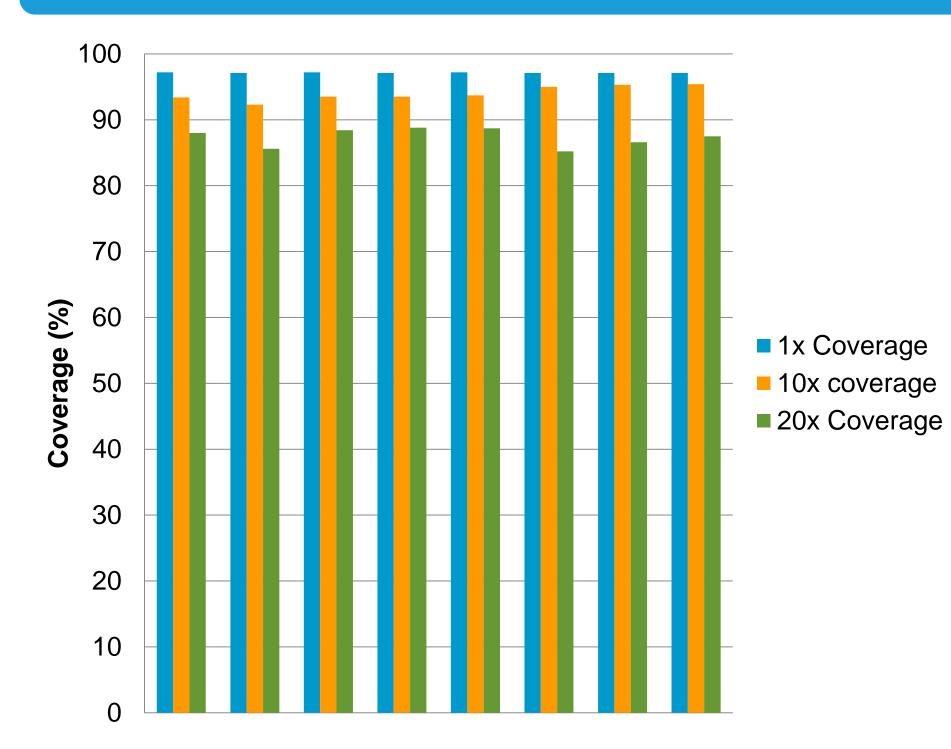




Figure 5. Triage view in SureCall v1.1 highlighting dbSNP record for SNP rs6829402 on the left and indel rs33992431 on the right for NA12878. The Triage view allows users to view variants and the reads supporting the call in a single view along with appetations from public databases.

SureCall Workflow



Evaluation sites	49113						
Overlapping sites with db135	39608						

Concordant sites 39435 Novel sites 9433 Concordant rates (%) 99.4

Table 1. SNP concordance with dbSNP135. The exon data show high concordance with previously reported SNPs. The amount of sequencing used for comparison is 4 Gb. SNP calling was performed with Genome Analysis Toolkit.

Kinome Capture Performance

view along with annotations from public databases.

eference SNP(refSNP) Cluster Report: rs6829402					Reference SNP	(refSNP) Clust	er Report:	rs33992431							
RefSNP	Allele	HGVS Names	Links			RefSI	IP		Allele	E. C.	H	GVS Names		Links	
Organism: human (Homo sapiens)	Variation Class SNV:	NC_000004.11:g.76503197A>G						omo sapiens)	Variation Class: DIV	1	NC_000004.11				
Molecule Type: Genomic	Variation Class: single nucleotide variation	NM 003948.3:c.*1215T>C			N	lolecule Type	: Genomic		del		NM_003948.3:				
Created/Updated in build: 116/138	RefSNP Alleles: A/G	NT 016354.19:g.1050918A>G			Created/Up	dated in build	: 126/138		RefSNP Alleles: -/A	/AA	NT_016354.19:	g. 1050926_105)927insA		
Map to Genome Build: 37.5	Allele Origin:				Map to (Genome Build	: 37.5		Allele Origin:						
Validation Status: 😿 🕂 H	Ancestral Allele: G				Val	Validation Status: 🔭			Ancestral Allele: C						
	Clinical Channel: unknown								Clinical Channel: unk	nown					
Clinical Significance: NA MAF/MinorAlleleCount: A=0.124/271									Clinical Significance: NA						
								MAF/MinorAlleleCount: NA							
	MAF Source: 1000 Genomes								MAF Source:						
Details are organized in the following sections:					NP Details are o	rganized in the	following s	ections:							
	source Diversity Validation				GeneView	<u>Map</u> <u>Sul</u>	bmission	<u>Fasta</u> <u>Resc</u>	urce <u>Diversity</u> <u>Validatio</u>	<u>n</u>					
ntegrated Maps (Hint: click on 'Chr Pos' or 'Contig Po	column value to see variation in NCBI sequence vie	ver)		1	Integrated Ma	ps (Hint: click	on 'Chr Po	s' or 'Contig Pos' o	column value to see variation	n in NCBI sequence viewe	er)		1	1	
Assembly ÷ Genome Build Chr Chr Pos	Contig Contig Po	s SNP Contig to Chr		Map Aethod	Assembly 🖨	Genome Build	Chr	Chr Pos	Contig	Contig Pos		Contig allele Chr	Neighbor SNP	r M Met	
GRCh37.p10 104.0 <u>4</u> 76503197	<u>NT 016354.19 1050918</u>	Fwd A Fwd	view	remap	GRCh37.p10	104.0	4	76503205:76503206	NT 016354.19	1050926:1050927	Fwd	- Fwd	view	t	

Figure 6. Corresponding dbSNP records shown for SNP (left) and indel (right).

Coefficient of Variation	Percentage of supporting reads	Total Number of Variants	Percentage of reported Indels
no filter	no filter	10751	87
3	75	4326	66
1	75	3718	61
0.5	75	1512	4

Table 2. Indel Filter performance in SureCall v1.1 on Ion Proton SureSelect Kinome data. The higher rate of indel calls on the Ion platform is primarily due to inaccurate flow calls over homopolymer regions. The number of indels reported in the Triage view is controlled by the parameters coefficient of variation and percentage of supporting reads. The coefficient of variation parameter is defined as the standard deviation over the mean indel size. The percentage of supporting reads is defined as the percentage of reads supporting the indel call.

Conclusions

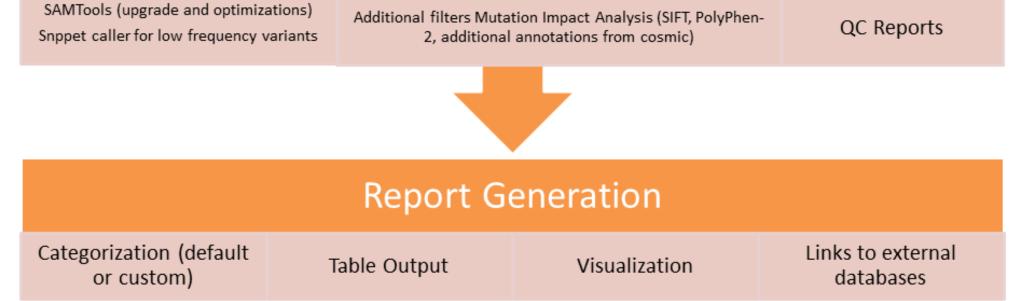


Figure 3. Capture performance with SureSelect Kinome baits of 3.2 Mb. 8 Hapmap DNA (NA12878) samples were analyzed in one Ion Proton run with multiplexing. Each sample was normalized with 0.32 Gb of sequencing. Coverage represents the percentage of targeted bases with at least 1 (blue), 10 (orange) and 20 (green) reads. • Agilent's SureSelect Target Enrichment for the Ion Proton Platform provides a comprehensive, efficient, robust, and cost-effective means to sequence subsets of the human genome.

• Different capture sizes show comparable high performance regardless of various targeted regions.

• High reproducibility of enrichment, depth distribution, and sequence coverage from multiplexed sequencing.

• Excellent concordance with known dbSNP.