
METHODOLOGY

Animal treatment
Weanling male Sprague–Dawley rats were
administered a semi-purified isocaloric diet
containing either soy oil, seal oil, docosahexaenoic
acid (DHA), fish oil or lard for 28 days.

Animals were then gavaged with either 0, 1 or 3 mg
MeHg/Kg body weight (bw) per day and fed the
same diet for 14 days.

An aliquot of a 24-h urine sample collected on the
day of necropsy (day 14 of Me-Hg treatment) was
extracted and the extract successively
methoxymated and trimethylsilylated prior to analysis
by GC/TOF-MS (Taylor et al. 2010).
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INTRODUCTION

Human exposure to methylmercury (MeHg), a
widespread environmental contaminant, through
consumption of contaminated fish, continues to
pose a significant health concern. MeHg is a potent
neurotoxicant in humans, especially in early
developmental stages (Ceccatelli et al. 2010). A
growing body of evidence also suggests that MeHg
exposure may also lead to increased risks of
adverse cardiovascular impacts in exposed
populations (Rice et al. 2010). In addition, the
kidney is also a known target organ of mercury
accumulation and toxicity (Jin et al. 2009).

MeHg interacts with selenol and thiol groups of
small molecules and enzymes involved in various
metabolic pathways (Carvalho et al. 2008). A
metabolomic approach was used to detect changes
in urinary metabolic profile of rats treated with
methylmercury (MeHg) and identify potential
biomarkers of exposure and toxic effects.

Figure 1. Mean intensities of peaks corresponding to
glycine (A), 2-aminoadipic acid (B), 2-ketoisocaproic acid
(C) and pantothenic acid (D) in rat urine samples.

CONCLUSION

A metabolomic approach was successfully applied
for the identification of potential biomarkers of
MeHg exposure. We are currently applying a similar
analytical procedure to compare urinary metabolic
profiles between Native Americans with low and
high MeHg exposure.

GC-TOF-MS

Agilent 6890 gas
chromatograph – Leco
Pegasus IV Tof MS

Gerstel MPS2/ALEX
dual rail automatic liner
exchange autosampler

Cold injection onto a
30 m-long, 0,25-mm ID
Rtx5Sil-MS column
(10-m integrated guard
column).

DATA PROCESSING AND STATISTICAL ANALYSIS
ChromaTOF v 2.32 was used for data preprocessing
and further processing was performed by filtering
algorithm implemented in BinBase database (Taylor
et al. 2010).

Compound were identified by matching retention
index (RI) and one major mass spectrum ion to
compounds in FiehnLib (containing 1,200 authentic
spectra and RI).

Statistical analyses were conducted using
MetaboAnalyst web server on log-transformed peak
intensities (Xia et al. 2009). The STATISTICA
software was used for Box & Whisker plots and
Cytoscape for creating metabolic network diagrams.

Table 1. Top 50 features identified by One-way 
ANOVA and post-hoc analysis

Figure 3. Significant features identified by Random
Forest. The features are ranked by the mean decrease
in classification accuracy when they are permuted.

DISCUSSION

This is the first study to our knowledge to adopt a
metabolomic approach in order to identify
biomarkers of MeHg exposure and effects.

Several potential urinary biomarkers were identified
including metabolites related to amino acid
degradation (2-ketoisocaproic acid, 2-aminoadipic
acid, fumaric acid), urea cycle (citrulline, glutamine)
and glutathione metabolism (cysteinyl-glycine).

RESULTS

Between 300 and 350 annotated metabolites were
identified in each urine sample, roughly 50% of
which were unambiguously identified.

One-way ANOVA analyses revealed highly
significant differences in peak intensities between
MeHg treatment groups (Table 1). Examples of
different diet- and treatment-related effects are
shown in Figure 1. Figure 2 shows a global view of
all MeHg-induced changes for chemically identified
metabolites.

Application of the Random Forest method lead to the
identification of 15 important features that best
explain differences between MeHg dose groups
(Figure 3).
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Figure 2. Metabolomic network diagram of 176 chemically
identified metabolites. Metabolites were mapped by
structural similarity (PubChem). Compounds enriched ( )
or decreased ( ) in urine samples of rats in the fish oil - 3
mg MeHg/Kg bw group vs fish oil controls. Node size is
proportional to the relative change in intensities.
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