

Institute of Cancer

Targeting Inflammatory Cytokines Using Adenoviruses: gene delivery of biological therapies in ovarian cancer

Michael A. Salako^{1,2}, Hagen Kulbe¹, Iain A. McNeish² and Frances R. Balkwill¹

¹Centre for Cancer and Inflammation, ²Centre for Molecular Oncology and Imaging, Institute of Cancer and the CR-UK Clinical Centre, UK

INTRODUCTION

TNF-

The cytokine TNF- α is central to initiating the inflammatory reactions of the innate immune system. Constitutive TNF- α expression is characteristic of the malignant ovarian surface epithelium and is a major player in a tumour-promoting cytokine network.

Oncolvtic adenoviral vectors

Replication-selective oncolytic viruses are a rapidly expanding therapeutic platform for cancer . E1A CR2 deleted adenoviral mutants hold great promise as gene therapy vectors. However, like all adenoviruses, their efficacy is hindered by an inflammatory cascade orchestrated by TNF-α.

Adenovirus mediated delivery of shRNA

We hypothesised that delivering TNF- α shRNA to ovarian cancer cells using an oncolytic adenovirus could reduce the inflammatory reaction that is generated by adenoviruses and also have direct anti-tumour activity on the cancer cells.

RESULTS 1

In vivo effect of TNF-a knockdown on ovarian cancer growth

- > Panels I & II are representative biolumenescence images *in vivo* of IGROV-Mock and stable shRNAi TNF-α IGROV ovarian cancer cells 42d after i.p. injection
- >The graph illustrates the significant reduction in tumour burden observed in the TNF-α shRNAi harbouring mice compared to controls

VIRUSES 1

Replication selective oncolvtic virus

- >d/922-947 contains a 24 b.p. deletion in E1A CR2
- >E1A CR2 normally binds to host cell Rb protein thereby driving cells into S-
- Due to this deletion, the virus can only replicate in cells with an abnormal Rb pathway, which is seen in 90% of cancers including ovarian

RESULTS 2

In vitro effect of TNF- α knockdown on sensitivity to d/922-947

- >Knockdown of TNF-α sensitizes ovarian cancer cells to oncolytic adenoviruses
- > d/922-947 had a 1 log increase in efficacy on the knockdown cells compared to the shScrambled control cells

In vivo effect of TNF-a knockdown on sensitivity to d/922-947

- > Treatment of female nude mice bearing shScrambled IGROV1 cells with non-replicating virus (Ad-control) or d/922 had little anticancer effect
- Mice bearing shTNF-α cells treated with d/922 survived significantly longer

RESULTS 3

Effect of the TNF-α mAb infliximab on sensitivity to d/922-947

>The TNF-α specific monoclonal antibody infliximab sensitizes the cells to d/922

CONCLUSION

- >The anti-tumour effect of oncolytic Ad viruses is increased by inhibiting TNF-α
- >Viruses containing shTNF-α RNAi have a similar effect
- Future work will investigate the mechanism of this increased anti-tumour effect Once pre-clinical studies are complete our aim will be to use the virus in clinical trials to treat women with advanced ovarian cancer

> shRNAi sequences as well as H1 promoters were cloned into Ad virus plasmids to generate either non-replicating (black label) or replicating (pink label) viruses > dlCR2 contains the same E1A CR2 deletion as dl922-947 as well as a MCS

