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Overview
Dynamic cellular networks determine production of proteins in 
the cells in our body.  The Rb-E2F network is a key example: it 
controls cell cycle, proliferation and degradation - a key network 
in almost all cancers. Gene networks can be modeled using known 
interactions between activators, repressors and their targets. 
Emerging technologies reveal single-cell level stochastic variation 
– complex biological “intrinsic noise” - that plays a major role in 
network dynamics. We develop statistical models of such single-
cell processes - fine-time scale dynamic network models.  Model 
estimation is challenging - requiring informative priors and 
custom Metropolis proposals. Rb-E2F examples introduce this 
emerging area of statistical systems biology. 
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• Full conditionals easy for k, d, φ, σε, σδ and σλ

• Random walk Metropolis-Hastings for K and n

Forward filtering backward sampling (FFBS)

Latent Process Recovery

Some Key References

• Novel stochastic models reflect single cell realities: 
- inherent probabilistic regulatory mechanisms
– biochemical activation/repression/interaction      

probabilities
- systematic intrinsic fluctuations 

• Some current foci on:
- effective MCMC methods including improved 
likelihood approximations for MH proposals
of latent noise processes

- block updating of parameters
- expanding the gene network – multiple nodes
- evaluating the impact of chosen discrete time scale
- imaging: extraction of real-time data from movies

• Multi-scale models: synthesizing single-cell models with
high-throughput genomic data of cell populations
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Mathematical 
model
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Identify cells from 
black and white images

Measure color intensity of 
phosphorescently marked proteins

e.g. E2F and Myc levels

Activation
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Need to account for
• Measurement error
• Sources  of stochastic “intrinsic noise”

Novel discrete time statistical models account for both 
Introduce latent noise processes and latent protein levels

Stochastic model accurately reflect real data
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Truncated normals and gammas for key parameters
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FFBS to impute latent E2F protein process and intrinsic noise process λ.
• E2F - FFBS handles missing data
• λ process: linearization in λ →Metropolis proposal
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