PERFORM FASTER PROTEOMICS with ProtE

Zuzana Demianova¹, Eemeli Pöysä¹, Sami Franssila² and Marc Baumann¹

1) Protein Chemistry Unit, Institute of Biomedicine, University of Helsinki, Finland; 2) Microelectronics center, Helsinki University of Technology, Finland Contact address: Zuzana Demianova, University of Helsinki, Biomedicum Helsinki, Protein Chemistry Unit, Haartmaninkatu 8, 00290 Helsinki, Finland. Email: Zuzana.Demianova@helsinki.fi

INTRODUCTION

There is a interest in developing the multidimensional microdevices. The main target is to reduce time of analysis, amount of sample, cost and to integrate to μ TAS. These goals are applicable for various separation methods in proteomics, e.g multidimensional liquid chromatography, capillary- and slab gel electrophoresis.

In the present paper we describe results obtained using a **miniaturized ProtE instrument** and its comparison to the mini-PROTEAN 3-cell (Bio-Rad). Our device is able to perform sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) in less than **11 min**. The device consists of a loading compartment and a plate with a gel chamber (**11 x 15 x 0.37 mm**). Our preliminary experiments show that ProtE is able to separate even complex mixtures of protein viz. cell lysates, and the approx. detection limit of ProtE being **2 - 3 ng**. It is very easily applicable into other proteomics methods; such as immunoblotting, PMF-MS or protein sequencing.

MATERIALS and METHODS

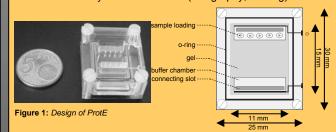

Material:	polymethyl methacrylate silicon coated with SiO ₂
Gel Chamber Size	2
Gel Composition:	68 μl of resolving gel
	(10%, 12% or 15% PAA) + 4% PAA
Buffer:	1xTGS
Sample Buffer:	Laemmli sample buffer
Sample Volume:	from 0.1 µl to 1 µl
PMF:	MALDI-ToF-MS and NCBI database

 Table 1: The conditions used during proteomic analysis for comparing mini-PROTEAN or ProtE instrument.

		Mini-PROTEAN 3-cell		ProtE	
method		time	size/ volume	time	size/ volume
PAGE	gel	~10 min/50V ~1.5 h/150 V	100 x 75 x 0.75 mm	~11 min/40 V	11 x 15 x 0.37 mm
Blotting	PVDF	~1h/45 mA		~20 min/100 V	
Immunostainning	blocking	~1h	50 ml	~1h	10 ml
	1 st antibody	~1h	1 ml	~1h	200 µl
	2 nd antibody	~1h	25 ml	~1h	1 ml
Coomassie staining	fixative	~30 min	50 ml	~10 min	25 ml
	stained	~30 min	50 ml	~15 min	25 ml
	destained	~1 h	3x 50ml	~30min	3x 25ml

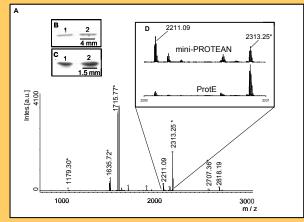
Fabrication and Design of the ProtE

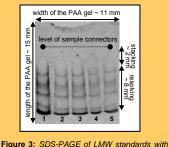
- PMMA by micro-millimeter scale machining tools
- silicon wafer by micro-fabrication (lithography, etching)

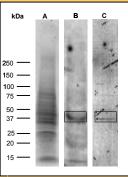
RESULTS and DISCUSSION

Slab gel electrophoresis and Subsequent proteomics SDS-PAGE with the ProtE

- ◆ 5-times more sensitivity compared to mini-PROTEAN (Figure 2 B & C)
- ◆ 10-times smaller amount of loaded sample (0.1 - 1 µl vs. 5 - 10 µl; Figure 3)
- ◆ 9-times faster separation (11 min vs. 100 min; Table 1)
- Iimit of detection is 2 3 ng (silver stain)




Figure 2: MALDI analysis and PAGE. A) MS spectrum of 0.4 μg βLG, B) SDS-PAGE by mini-PROTEAN & C) by ProtE, D) MS spectra comparison. 1) 0.4 μg & 2) 0.6 μg of βLG


Peptide Mass Fingerprinting - Mass Spectrometry

- \bullet 0.4 μg βLG band was in-gel alkylated and digested with modified trypsin, analyzed by MALDI-ToF-MS and PMF was identified in NCBI (Figure 2A&D).
- Figure 2D shows improved intensity of a peptide fragment using
 9-times smaller amount of enzyme (0.05 -0.1 μg vs. 0.5 μg)

Immunoblotting with the ProtE

- + **540 ng** of smooth muscle cell lysate was immunoblotted against α-actin (Figure 4)
- ◆ 5-times smaller amount of primary antibody (200 µl vs. 1 ml)

 ProtE. 1) 1.44 µg, 2)&3) 720 ng, 4)&5) 432 ng.

 For protocol see Table 1.

 Separation of E40 ng of emotth murdle of large and large a

Figure 4: Separation of 540 ng of smooth muscle cell lysate. A) SDS-PAGE and B) immunoblotted against α -actin of cell lysate run by ProtE, and C) immunoblotted against α -actin of cell lysate run by mini-PROTEAN. For protocols see Table 1.

CONCLUSIONS

The ProtE instrument for proteomic analysis:

- shorter separation time
- \blacklozenge smaller amount of sample and reagents \rightarrow cheaper analysis
- higher sensitivity
- possibility of automation

ACKNOWELGEMENTS

This research was supported by the Finnish Academy (Project 201599) and TEKES (40396/03).