We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Could flies help us understand brain injuries?
News

Could flies help us understand brain injuries?

Could flies help us understand brain injuries?
News

Could flies help us understand brain injuries?

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Could flies help us understand brain injuries? "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

New study finds that fruit flies could be a model organism for learning the genetic pathways that affect human brain injuries and recovery -


Each year, an estimated 1.7 million people in the United States sustain traumatic brain injuries (TBIs), according to the US Centers for Disease Control and Prevention. These injuries occur most frequently from falling, but can also result from military combat, car accidents, contact sports or domestic abuse. Recently, physicians and researchers have become increasingly concerned that even mild cases of repetitive brain trauma could have long-term, unanticipated consequences.


See Also: Impact of traumatic brain injury on long-term memory explored


Given the prevalence of these injuries, it's surprising that the genes and cellular pathways that can blunt TBI's harmfulness are relatively unknown, said Kim Finley, an associate professor at the San Diego State University (SDSU) Donald P. Shiley BioScience Center. A new study led by SDSU scientists and recently published in the journal Scientific Reports suggests that using fruit flies as a TBI model may hold the key to identifying important genes and pathways that promote the repair of and minimize damage to the nervous system.


"Fruit flies actually have a very complex nervous system," said Finley, the study's co-lead author. "They are also an incredible model system that has been used for over 100 years for genetic studies, and more recently to understand the genes that maintain a healthy brain."


In humans, changes in mood, headaches and sleep problems are just a few of the possible symptoms associated with suffering mild traumatic brain injury. The timeline for these symptoms can vary greatly: Some people experience them immediately following injury, while others may develop problems many years after.


Finley noted that because fruit flies grow old quickly, observing them allows researchers to rapidly study the long-term consequences of traumatic brain injury.


"Traits that might take 40 years to develop in people can occur in flies within two weeks," she said.


To test whether flies can be used to model traumatic brain injuries, Finley and colleagues used an automated system to vigorously shake and traumatize thousands of fruit flies.


Learn More: Scientists test Actual Reality for functional assessment after traumatic brain injury


"Fruit flies come out of this mild trauma and appear perfectly normal," explained Eric Ratliff, an adjunct assistant professor at SDSU and the study's other co-lead author. "However, the flies quickly begin to show signs of decline, similar to problems found in people who have been exposed to head injuries."


In their study, injured fruit flies showed damage to neurons within the brain, as well as an accumulation of a protein called hyper-phosphorylated Tau, a hallmark feature of chronic traumatic encephalopathy (CTE). Furthermore, injured flies also began to experience insomnia and their normal sleep patterns deteriorated. The results suggest that studying traumatic injury in fruit flies may indeed reveal genetic and cellular factors that can improve the brain's resilience to injuries.


"It's really a unique model," Finley said. "We've developed it to be reliable, inexpensive, and fast."


Note: Material may have been edited for length and content. For further information, please contact the cited source.


San Diego State University   Original reporting by: Michael Price


Publication

Barekat A et al. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury.   Scientific Reports, Published Online May 4 2016. doi: 10.1038/srep25252


Advertisement