We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

How the brain improves motor control

How the brain improves motor control

How the brain improves motor control

How the brain improves motor control

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "How the brain improves motor control "

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Error signals in motor cortices drive adaptation in reaching -

Adaptation in reaching—gradual improvement of motor control in response to a perturbation—is a central issue in motor neuroscience. However, even the cortical origin of errors that drive adaptation has remained elusive. In a new paper published in Neuron, Osaka University researchers have shown that error signals encoded by motor cortical neurons drive adaptation in reaching.

Learn More: Motor cortex shown to play active role in learning movement patterns

The researchers discovered that the premotor and primary motor cortices encoded visual error in reaching, stimulation to the motor cortices induced trial-by-trial increased in reach errors, the error increased opposite to the preferred direction of errors at each location, and the after-effect of stimulation subsided gradually as in ordinary adaptation.

The neural mechanisms of motor learning and adaptation constitute a central issue in both basic and clinical neuroscience. However, it is surprising that very little is known about the neural mechanisms underlying the motor learning and adaptation of voluntary arm movements. For example, the origin of cortical error signals that drive adaptation in reaching remains an unanswered question. A major theory in motor learning (feedback error learning) proposed by Kawato and Gomi (1992) hypothesized that error signals are provided by premotor circuits, including the motor cortical circuits. However, neuroimaging studies to date have not indicated whether motor cortices encode error signals. Preceding human imaging studies unanimously implicated parietal regions, such as areas 2, 5 and 7, in representing reaching errors.

See Also: Stop and listen: Study shows how movement affects hearing

In the current study, Masato Inoue and colleagues were successful for the first time in inducing trial-by-trial "adaptation" in voluntary arm movements by artificial electrical stimulation of the premotor cortex (PM) or the primary motor cortex (M1). When the stimulation was terminated, the error (after-effect) did not decrease at once but recovered with practice, as observed after typical adaptation. The direction of the increase in the error was opposite to the "preferred" error direction of the neuron recorded in the stimulation site. The results clearly show that the motor cortices submit error signals that drive adaptation in voluntary arm movements, as predicted by the feedback error learning scheme.

The novel technique to artificially "improve" a motor skill by a small amount of stimulation would be applicable to performance enhancement in athletes as well as for restoring motor control in neurological patients.

Note: Material may have been edited for length and content. For further information, please contact the cited source.

Osaka University   press release


Inoue M, Uchimura M, Kitazawa S. Error Signals in Motor Cortices Drive Adaptation in Reaching.   Neuron, Published June 1 2016. doi: 10.1016/j.neuron.2016.04.029